
STEMsalabim Documentation
Release 3.0.2

Jan Oliver Oelerich

Feb 22, 2018

Getting Started

1 Installing STEMsalabim 1
1.1 Requirements . 1
1.2 Building STEMsalabim . 1

2 Executing STEMsalabim 3
2.1 Thread-only parallelization . 3
2.2 MPI only parallelization . 3
2.3 Hybrid parallelization . 4
2.4 Running the Si 001 example . 4

3 Visualization of crystals and results 5
3.1 Visualize the supercell with Ovito . 5
3.2 Generate an ADF STEM image . 5
3.3 What now? . 6

4 What’s new 19
4.1 STEMsalabim 3.0.0 . 19
4.2 STEMsalabim 2.0.0 . 19
4.3 STEMsalabim 2.0.0-beta2 . 19
4.4 STEMsalabim 2.0.0-beta . 20
4.5 STEMsalabim 1.0 . 20

5 Citing STEMsalabim 21

6 Research articles with simulations from STEMsalabim 23
6.1 2018 . 23
6.2 2017 . 23

i

ii

CHAPTER 1

Installing STEMsalabim

1.1 Requirements

The following libraries and tools are needed to successfully compile the code:

• A C++11 compiler (such as gcc/g++). The Intel compiler suite is currently _not_ supported!

• CMake > 3.3

• NetCDF

• libConfig >= 1.5

• FFTW3

• An MPI implementation (such as OpenMPI)

The following libraries are optional and are needed only to enable additional features:

• libCurl (required for HTTP POST status announcements)

Note: You may find some of the requirements in the repositories of your Linux distribution, at least the compiler,
CMake, libCurl and OpenMPI. On Debian or Ubuntu Linux, for example, you can simply run the following
command to download and install all the requirements:

$ apt-get install build-essential cmake libconfig-dev libfftw3-dev libnetcdf-dev
→˓libcurl-dev

Tip: As the main work of the STEM image simulations is carried out by the FFTW3 library, you may reach best
performance when you compile the library yourself with all available CPU level optimizations enabled.

1.2 Building STEMsalabim

Extract the code archive to some folder on your hard drive, e.g.

1

https://gcc.gnu.org/
https://cmake.org/
https://www.unidata.ucar.edu/software/netcdf/
http://www.hyperrealm.com/libconfig/
http://www.fftw.org/
http://www.open-mpi.de/
https://curl.haxx.se/libcurl/
http://www.fftw.org/

STEMsalabim Documentation, Release 3.0.2

$ cd /tmp
$ tar xzf stemsalabim-VERSION.tar.gz

Then, create a build directory and run CMake to generate the build configuration:

$ mkdir /tmp/stemsalabim-build
$ cd /tmp/stemsalabim-build
$ cmake ../stemsalabim-VERSION

Please refer to the CMake documentation for instructions how to specify library paths and other environment
variables, in case the above commands failed. When your libraries exist at non-standard places in your file system,
you can specify the search paths as follows:

$ cmake ../stemsalabim-VERSION \
-DFFTW_ROOT=/my/custom/fftw/ \
-DLIBCONFIG_ROOT=/my/custom/libconfig/ \
-DNETCDF_INCLUDE_DIR=/my/custom/netcdf/include \
-DCMAKE_INSTALL_PREFIX=/usr/local \
-DCMAKE_EXE_LINKER_FLAGS='-Wl,-rpath,/my/custom/lib64:/my/custom/lib' \
-DCMAKE_CXX_COMPILER=/usr/bin/g++

In the above example, some custom library paths are specified and the program’s run-time search path is modified.
If cmake doesn’t detect the correct compiler automatically, you can specify it with -DCMAKE_CXX_COMPILER=.

Having generated the necessary build files with CMake, simply compile the program using make and move it to
the install location with make install:

$ make -j8 # use 8 cores for compilation
$ make install # move the binaries and libraries to the INSTALL_PREFIX path

You are now ready to execute your first simulation.

2 Chapter 1. Installing STEMsalabim

https://cmake.org/documentation/

CHAPTER 2

Executing STEMsalabim

STEMsalabim is executed on the command line and configured via input configuration files in libConfig syntax.
To learn about the structure of the configuration files, please read Parameter files.

Note: Some of configuration parameters can be changed via command line parameters, which are described in
Command line arguments.

STEMsalabim supports both threaded (shared memory) and MPI (distributed memory) parallelization. For most
efficient resource usage we recommend a hybrid approach, where one MPI task is run per node that spawns a
bunch of threads to parallelize the work within the node. (See Hybrid Parallelization model for more information
on how STEMsalabim is parallelized.)

2.1 Thread-only parallelization

You can execute STEMsalabim on a single multi-core computer as follows:

$ stemsalabim --params=./my_config_file.cfg --num-threads=32

This will run the simulation configured in my_config_file.cfg on 32 cores, of which 31 are used as workers.

2.2 MPI only parallelization

For pure MPI parallelization without spawning additional threads, STEMsalabim must be called via mpirun or
mpiexec, depending on the MPI implementation available on your machine:

$ mpirun -n 32 stemsalabim --params=./my_config_file.cfg --num-threads=1 --package-
→˓size=10

This command will run the simulation in parallel on 32 MPI processors without spawning additional threads.

Note: We chose a work package size ten times the number of threads on each MPI processor (which is 1 here).
This is so that each thread calculates (on average) ten pixels until results are communicated via the network. This

3

http://www.hyperrealm.com/libconfig/libconfig_manual.html#Configuration-Files

STEMsalabim Documentation, Release 3.0.2

reduces management overhead but increases the amount of data sent via the network.

2.3 Hybrid parallelization

Hybrid parallelization is the recommended mode to run STEMsalabim.

For hybrid parallelization, make sure that on each node only a single MPI process is spawned and that there is no
CPU pinning active, i.e., STEMsalabim needs to be able to spawn threads on different cores.

For example, if we wanted to run a simulation in parallel on 32 machines using OpenMPI and on each machine
use 16 cores, we would run

$ mpirun -n 32 --bind-to none --map-by ppr:1:node:pe=16 \
stemsalabim \

--params=./my_config_file.cfg \
--num-threads=16 \
--package-size=160

The options --bind-to none --map-by ppr:1:node:pe=16 tell OpenMPI not to bind the process to
anything and to reserve 16 threads for each instance. Please refer to the manual of your MPI implementation to
figure out how exactly to run the software. On HPC clusters it is wise to contact the admin team for optimizing
the simulation performance.

2.4 Running the Si 001 example

In the source code archive you find an examples/Si_001 folder that contains a simple example that you can
execute to get started. The file Si_001.xyz describes a 2x2x36 unit cell Si sample. Please see Crystal file
format for the format description.

In the file Si_001.cfg we find the simulation configuration / parameters. The file contains all available pa-
rameters, regardless of whether they have their default value. We recommend to always specify a complete set of
simulation parameters in the configuration files.

You can now run the simulation:

$ /path/to/stemsalabim --params Si_001.cfg --num-threads=8

After the simulation finished (about 3 hours on an Intel i7 CPU with 8 cores) you can analyze the results found in
Si_001.nc. Please see the next page (Visualization of crystals and results) for details.

4 Chapter 2. Executing STEMsalabim

CHAPTER 3

Visualization of crystals and results

Now that our simulation finished successfully, we can continue with visualizing the results.

3.1 Visualize the supercell with Ovito

The STEMsalabim output files (somewhat) comply with the AMBER specifications to visualize the specimen
structure. However, all the dimensions and variables of AMBER live within the NetCDF group /AMBER in the
NC file. This means that STEMsalabim output files will not be compatible to visualization programs requiring
the pure AMBER specs!

However, the authors of the excellent cross-platform Ovito software, which is a visualization program for atomic
structures (and much more), have added support for the /AMBER sub-group, so that STEMsalabim NetCDF result
files can be visualized seamlessly in Ovito.

What you will see is the atomic structure of the input specimen. In addition to the positional coordinates of
each atom, you find the mean square displacement (msd), the slice ID (slice), the equilibrium coordinates
(lattice_coordinates), elements (elements) and atomic radii (radii) as variables. Each frozen lattice
configuration is one frame in the AMBER specs, so you can see the atoms wiggling around if you use the frame
slider of ovito.

3.2 Generate an ADF STEM image

In the examples/Si_001 folder you will find the two files make_haadf.m and make_haadf.py. Both
extract an HAADF image from the simulated file. Please have a look at the code to get an idea of how to work
with the NetCDF result files.

• MATLAB® uses HDF5 for its .mat format for a couple of versions now, and is therefore perfectly capable
of reading STEMsalabim result files. For quick analysis and image generation is a great tool.

• Python with the NetCDF4 module is also a great tool to analyze and visualize STEMsalabim result files,
especially combined with numerical libraries such as numpy or pandas.

5

http://ambermd.org/netcdf/nctraj.xhtml
https://www.ovito.org/
https://de.mathworks.com/products/matlab.html
http://unidata.github.io/netcdf4-python/
http://www.numpy.org/
https://pandas.pydata.org/

STEMsalabim Documentation, Release 3.0.2

3.3 What now?

You have now completed your first simulation and looked at some of its results. In order to use STEMsalabim for
your research you should dig deeper into this documentation and read the following documents:

3.3.1 General information

Warning: This documentation is not really complete (yet). Please contact when you have any questions!

Throughout this documentation we assume that you are familiar with the theoretical background behind the scan-
ning transmission electron microscope (STEM) to some degree. Also, we assume that you have some knowledge
about the UNIX/Linux command line and parallelized computation. STEMsalabim is currently not intended to be
run on a desktop computer. While that is possible and works, the main purpose of the program is to be used in a
highly parallelized multi-computer environment.

We took great care of making STEMsalabim easy to install. You can find instructions at Installing STEMsalabim.
However, if you run into technical problems you should seek help from an administrator of your computer cluster
first.

Structure of a simulation

There essence of STEMsalabim is to model the interaction of a focused electron beam with a bunch of atoms,
typically in the form of a crystalline sample. Given the necessary input files, the simulation crunches numbers
for some time, after which all of the calculated results can be found in the output file. Please refer to Executing
STEMsalabim for notes how to start a simulation.

Input files

All information about the specimen are listed in the Crystal file format, which is one of the two required input
files for STEMsalabim. It contains each atom’s species (element), coordinates, and mean square displacement as
it appears in the Debye-Waller factors.

In addition, you need to supply a Parameter files for each simulation, containing information about the micro-
scope, detector, and all required simulation parameters. All these parameters are given in a specific syntax in the
Parameter files that are always required for starting a STEMsalabim* simulation.

Output files

The complete output of a STEMsalabim simulation is written to a NetCDF file. NetCDF is a binary, hierarchical
file format for scientific data, based on HDF5. NetCDF/HDF5 allow us to compress the output data and store it in
machine-readable, organized format while still only having to deal with a single output file.

You can read more about the output file structure at Output file format.

Hybrid Parallelization model

STEMsalabim simulations can be parallelized both via POSIX threads and via message passing interface (MPI). A
typical simulation will use both schemes at the same time: MPI is used for communication between the computing
nodes, and threads are used for intra-node parallelization, the usual multi-cpu/multi-core structure.

Hint: A high performance computation cluster is an array of many (equal) computing nodes. Typical highly-
parallelized software uses more than one of the nodes for parallel computations. There is usually no memory

6 Chapter 3. Visualization of crystals and results

https://en.wikipedia.org/wiki/Mean_squared_displacement
https://en.wikipedia.org/wiki/Debye%E2%80%93Waller_factor
https://www.unidata.ucar.edu/software/netcdf/
https://support.hdfgroup.org/HDF5/
https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/Message_Passing_Interface

STEMsalabim Documentation, Release 3.0.2

that is shared between the nodes, so all information required for the management of parallel computing needs to
be explicitely communicated between the processes on the different machines. The quasi-standard for that is the
message passing interface (MPI).

Let us assume a simulation that runs on 𝑀 computers and each of them spawns 𝑁 threads.

There is a single, special master thread (the thread 0 of the MPI process with rank 0) that orchestrates the simula-
tion, distributes work packages and does all the I/O. This is to avoid race conditions and prevent waiting times of
the worker process. All other threads ((𝑀 ×𝑁)− 1) participate in the simulation.

A typical STEMsalabim simulation is composed of many independent multi-slice simulations that differ only in
the position of the scanning probe. Hence, parallelization is done on the level of these multi-slice simulations, with
each thread performing them independently from other threads. In order to reduce the number of MPI messages
being sent around, only the main thread of each of the 𝑀 MPI processors communicates with the master thread.
The master thread sends a work package containing some number of probe pixels to be calculated to an MPI
process, which then carries out all the calculations in parallel on its 𝑁 threads, and sends back the results when it
is finished. After the results are received by the master thread, it sends another work package to the MPI process
until there is no work left. In parallel, the worker threads of the MPI process with rank 0 also work on emptying
the work queue.

Note: Within one MPI processor, the threads can share their memory. As the main memory consumption
comes from storing the weak phase objects of the slices in the multi-slice simulation, which don’t change during
the actual simulation, this greatly reduces memory usage as compared to MPI only parallelization. You should
therefore always aim for hybrid parallelization!

3.3.2 Simulation Parameters

A STEMsalabim simulation is mainly configured via parameter files, with a few exceptions where configuration
options may be overriden by command line arguments.

Parameter files

The configuration file that STEMsalabim expects for the command line parameter --params is formatted using
the simple JSON-like syntax of libConfig syntax. Below all available parameters are tabulated. Each section
(block in the libConfig syntax) is described separately below.

application

The application block contains general settings regarding the simulation.

application: {
random_seed = 0; # the random seed. 0 -> generate
precision = "single"; # single or double precision
skip_simulation = false; # skip the actual multi-slice simulation (for

→˓debugging)
}

application.random_seed unsigned int [default: ‘0‘]

In the frozen lattice approximation, the atoms are randomly dislocated from their equilibrium position. The
random seed for that can be specified here. If set to 0, a random seed is generated by the program. For
reproduction of previous results, the seed can be set to a specific value.

application.precision string [default: ‘single‘]

Set to d or double or high to use double precision for the calculation. Note, that this increases computer
time, memory consumption, and output file size.

3.3. What now? 7

https://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.hyperrealm.com/libconfig/

STEMsalabim Documentation, Release 3.0.2

application.skip_simulation boolean [default: ‘false‘]

Do not carry out the actual multi-slice simulation, but only write the crystal information to the output file.
This is for debugging purposes.

simulation

Some general settings specific to this simulation.

simulation: {
title = "benchmarksmall"; # title of the simulation
bandwidth_limiting = true; # bandwidth limit the wave functions?
normalize_always = false; # normalize wave functions after each slice?
output_file = "out.nc"; # output file name
output_compress = "false"; # compress output data. This reduces file sizes,

→˓but increases IO times.
}

simulation.title string [default: ‘‘]

The title of the simulation, as saved in the output NC file.

simulation.bandwidth_limiting boolean [default: ‘true‘]

Enforce cylindrical symmetry on all wave functions/operations. This results in all wave functions to be
clipped significantly in momentum space. However, the benefit of reduced artefacts due to periodic bound-
ary conditions is usually more important.

simulation.normalize_always boolean [default: ‘false‘]

Renormalize the electronic wave function after each slice of the multi-slice approximation, so that lost
intensitiy due to limited k space grid is compensated for. Usually, this is not necessary, so the default is
false.

simulation.output_file string [default: ‘‘]

Path to the result NetCDF file. Please read Output file format to learn about its format. Relative paths are
interpreted relative to the working directory of the simulation.

simulation.output_compress boolean [default: ‘false‘]

The written output data can be compressed by HDF5. This obviously takes more I/O time, but reduces
output file sizes.

probe

Parameters of the STEM probe.

probe: {
c5 = 5e6; # Fifth order spherical aberrations coefficient.

→˓in nm
cs = 2e3; # Third order spherical aberrations coefficient.

→˓in nm
defocus = -2.0; # defocus value in nm
fwhm_defoci = 6.0; # FWHM of the defocus distribution when

→˓simulating a defocus series for Cc.
num_defoci = 1; # number of the defoci when simulating a defocus

→˓series for Cc. Should be odd.
astigmatism_ca = 0; # Two-fold astigmatism. in nm
astigmatism_angle = 0; # Two-fold astigmatism angle. in mrad
min_apert = 0.0; # Minimum numerical aperture of the objective. in

→˓mrad
max_apert = 24.0; # Maximum numerical aperture of the objective. in

→˓mrad

8 Chapter 3. Visualization of crystals and results

STEMsalabim Documentation, Release 3.0.2

beam_energy = 200.0; # Electron beam energy. in kV
scan_density = 40; # The sampling density for the electron probe

→˓scanning. in 1/nm
}

probe.c5 number (nm) [default: ‘5e7‘]

Fifth order spherical aberrations coefficient.

probe.cs number (nm) [default: ‘2e4‘]

Third order spherical aberrations coefficient.

probe.defocus number (nm) [default: ‘2.0‘]

Probe defocus.

probe.fwhm_defoci number (nm) [default: ‘6.0‘]

STEMsalabim can calculate a defocus series to model chromatic aberrations. In that case, this parameter is
the full-width-half-maximum of the normal distribution of defocus spread in nm.

probe.fwhm_defoci number [default: ‘1‘]

STEMsalabim can calculate a defocus series to model chromatic aberrations. In that case, this parameter is
the number of defoci calculated.

probe.astigmatism_ca number (nm) [default: ‘0‘]

Two-fold astigmatism.

probe.astigmatism_angle number (mrad) [default: ‘0‘]

Two-fold astigmatism angle.

probe.min_apert number (mrad) [default: ‘0‘]

Minimum numerical aperture of the objective.

probe.max_apert number (mrad) [default: ‘24‘]

Maximum numerical aperture of the objective.

probe.beam_energy number (keV) [default: ‘200‘]

Electron beam energy.

probe.scan_density number (1/nm) [default: ‘40.0‘]

The sampling density for the electron probe scanning. This number multiplied by the supercell size in 𝑥 and
𝑦 direction gives the number of positions, i.e., scan points, that are simulated.

specimen

Settings for the specimen and potentials.

specimen: {
max_potential_radius = 0.3; # potential cut-off radius. in nm
crystal_file = "input.xyz"; # xyz file with columns [Element, x, y, z, MSD]

}

specimen.max_potential_radius number (nm) [default: ‘0.3‘]

Distance, after which the atomic potentials are cut off during generation of the slices’ transmission functions.

specimen.crystal_file string [default: ‘‘]

Path to the file containing the atomic coordinates. Please see Crystal file format to learn about its format.
Relative paths are interpreted relative to the working directory of the simulation.

3.3. What now? 9

STEMsalabim Documentation, Release 3.0.2

grating

Settings that describe the multi-slice algorithm, i.e., the density of the discretization and the slice thickness.

grating: {
density = 360.0; # The density for the real space and fourier

→˓space grids. in 1/nm
slice_thickness = 0.2715; # Multi-slice slice thickness. in nm

}

grating.density number (1/nm) [default: ‘360.0‘]

The density for the real space and fourier space grids. This number multiplied by the supercell size in 𝑥
and 𝑦 direction gives the number of sampling grid points for the calculation. This also determines the
maximum angle 𝛼 = 𝑘𝜆 that is described by the 𝑘-space grids.

grating.slice_thickness number (nm) [default: ‘0.2715‘]

The thickness of the slices in the multi-slice algorithm.

adf

Settings for collection of ADF data.

adf: {
enabled = true; # enable calculation and collection of ADF

→˓intensities
x = (0.0, 1.0); # [min, max] where min and max are in relative

→˓units
y = (0.0, 1.0); # [min, max] where min and max are in relative

→˓units
detector_min_angle = 1.0; # inner detector angle in mrad
detector_max_angle = 300.0; # outer detector angle in mrad
detector_num_angles = 300; # number of bins of the ADF detector.
detector_interval_exponent = 1.0; # possibility to set non-linear detector

→˓bins.
save_slices_every = 0; # save only every n slices. 0 -> only the sample

→˓bottom is saved.
average_configurations = true; # average the frozen phonon configurations in

→˓the output file
average_defoci = true; # average the defoci in the output file

}

adf.enabled boolean [default: ‘true‘]

Enable or disable calculation of ADF intensities completely.

adf.x array [default: ‘[0.0,1.0]‘]

The relative coordinates, between which the supercell is scanned by the electron probe. When [0.0,
1.0], the whole x width of the supercell is scanned.

adf.y array [default: ‘[0.0,1.0]‘]

The relative coordinates, between which the supercell is scanned by the electron probe. When [0.0,
1.0], the whole y width of the supercell is scanned.

adf.detector_min_angle number (mrad) [default: ‘1.0‘]

Inner ADF detector angle in mrad.

adf.detector_max_angle number (mrad) [default: ‘300.0‘]

Outer ADF detector angle in mrad.

10 Chapter 3. Visualization of crystals and results

STEMsalabim Documentation, Release 3.0.2

adf.detector_num_angles number [default: ‘300‘]

Number of ADF detector angle bins.

adf.detector_interval_exponent number [default: ‘1.0‘]

A non-linear grid spacing of the detector grid can be chosen to increase the sampling at smaller angles. The
ith grid point between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 is calculated by 𝜃𝑖 = 𝜃𝑚𝑖𝑛 + (𝑖/𝑁)𝑝(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛), where p is
the interval exponent and 𝑁 is the number of grid points as given by detector.angles. When set to 1.0, the
grid is linear.

Note: A fundamental lower limit for the grid spacing is given by the grating.density density. Finer sampling
than the grating density will result in odd artefacts!

adf.save_slices_every integer [default: ‘1‘]

The ADF intensity is calculated and stored after every slice that is a multiple of this parameter. The default
value of 1 results in every slice to be saved, higher numbers skip slices. The value 0 corresponds to the
intensity only being saved after the last slice, i.e., at the sample bottom.

adf.average_configurations boolean [default: ‘true‘]

Whether or not to perform in-place averaging over frozen lattice configurations during writing to the output
file.

adf.average_defoci boolean [default: ‘true‘]

Whether or not to perform in-place (weighted) averaging over defoci during writing to the output file.

cbed

Settings for collection of CBEDs.

Note: Storing CBEDs will increase the output file size drastically. Moreover, the information contained in the
CBEDs may be redundant to the ADF data.

cbed: {
enabled = true; # enable calculation and collection of CBED

→˓intensities
x = (0.0, 1.0); # [min, max] where min and max are in relative

→˓units
y = (0.0, 1.0); # [min, max] where min and max are in relative

→˓units
size = [128, 128]; # When provided, this parameter determines the

→˓size of CBEDs saved
to the output file. The CBEDs are resized using

→˓bilinear interpolation.
save_slices_every = 0; # save only every n slices. 0 -> only the sample

→˓bottom is saved.
average_configurations = true; # average the frozen phonon configurations in

→˓the output file
average_defoci = true; # average the defoci in the output file

}

cbed.enabled boolean [default: ‘false‘]

Enable or disable calculation of CBED intensities completely.

cbed.x array [default: ‘[0.0,1.0]‘]

The relative x coordinates, between which CBED images are to be saved. When [0.0, 1.0], the whole
y width of the supercell is scanned.

3.3. What now? 11

STEMsalabim Documentation, Release 3.0.2

cbed.y array [default: ‘[0.0,1.0]‘]

The relative y coordinates, between which CBED images are to be saved. When [0.0, 1.0], the whole
y width of the supercell is scanned.

cbed.size array [default: ‘[0.0,0.0]‘]

Width and height of the CBEDs. Saving CBEDs can become very disk-space intensive, especially when the
k grids are huge (as required for big samples). When this parameter is given, one can choose the size of
the CBEDs that are saved to the output file. The images are reduced using bilinear interpolation. The total
intensity is preserved. Leave the parameter out or set any direction to 0 to use the original size.

cbed.save_slices_every integer [default: ‘1‘]

The STEM intensity is calculated and stored after every slice that is a multiple of this parameter. The default
value of 1 results in every slice to be saved, higher numbers skip slices. The value 0 corresponds to the
intensity only being saved after the last slice, i.e., at the sample bottom.

cbed.average_configurations boolean [default: ‘true‘]

Whether or not to perform in-place averaging over frozen lattice configurations during writing to the output
file.

cbed.average_defoci boolean [default: ‘true‘]

Whether or not to perform in-place (weighted) averaging over defoci during writing to the output file.

frozen_phonon

Settings for the frozen_phonon algorithm to simulate TDS.

frozen_phonon: {
number_configurations = 15; # Number of frozen phonon configurations to

→˓calculate
fixed_slicing = true; # When this is true, the z coordinate is not

→˓varied during phonon vibrations.
}

frozen_phonon.number_configurations integer [default: ‘1‘]

Number of frozen phonon configurations to calculate.

frozen_phonon.fixed_slicing boolean [default: ‘true‘]

When true, the z coordinates (beam direction) of the atoms is not varied, resulting in fixed slicing between
subsequent frozen phonon configurations.

http_reporting

Settings for HTTP reporting of simulation progress.

http_reporting: { # send POST status requests of the simulation to
→˓some HTTP endpoint.

reporting = true; # reporting can be disabled with this parameter.
url = "http://my_url"; # The URL to POST to.
auth_user = "my_user"; # username for HTTP basic auth
auth_pass = "my_pass"; # password for HTTP basic auth
parameters: { # All parameters in this http_reporting.

→˓parameters are sent as query.
in addition to the status information. Use

→˓whatever your API needs.
my_login = "username";
my_token = "abcdef";

12 Chapter 3. Visualization of crystals and results

https://en.wikipedia.org/wiki/Bilinear_interpolation

STEMsalabim Documentation, Release 3.0.2

}
}

http_reporting.reporting boolean [default: ‘false‘]

Should the simulation status be announced via HTTP POST requests? See HTTP Status reporting for
details.

http_reporting.url string [default: ‘‘]

The HTTP API endpoint for the status reporting. See HTTP Status reporting for details.

http_reporting.auth_user string [default: ‘‘]

The username for HTTP Basic Authentication. Leave empty to not authenticate.

http_reporting.auth_pass string [default: ‘‘]

The password for HTTP Basic Authentication.

http_reporting.params libConfig block [default: ‘{}‘]

Additional parameters to include in the HTTP POST JSON requests. See HTTP Status reporting for details.

Command line arguments

–help, -h flag

Display a help message with a brief description of available command line parameters.

–params, -p string (required)

Path to the configuration file as explained above in Parameter files files.

–num-threads integer [default: ‘1‘]

Number of threads per MPI core. Note, that STEMsalabim will do nothing if only parallelized via threads
and --num-threads=1, as thread 0 of the master MPI process does not participate in the calculation.
See Hybrid Parallelization model for details.

–package-size integer [default: ‘10‘]

The number of tasks that are sent to an MPI process. This should scale with the number of threads each
MPI process spawns. A good value is 10× the value of –num_threads.

–skip-simulation flag

Override configuration parameter application.skip_simulation to true when this flag is set.

–num-configurations integer

Override configuration parameter frozen_phonon.number_configurations.

–defocus, -d float

Override the value of the probe.defocus setting. If specified exactly once, a single defocus is calculated. If
specified exactly three times, the functionality is similar to the probe.defocus parameter.

–output-file, -o string

Override the value of the output.output_file setting.

–crystal-file, -c string

Override the value of the specimen.crystal_file setting.

–title, -t string

Override the value of the simulation.title setting.

3.3. What now? 13

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

STEMsalabim Documentation, Release 3.0.2

3.3.3 File formats

A STEMsalabim simulation is set-up via input files and its results are stored in an output file. The file for
configuring a simulation is described in detail at Parameter files. Here, we describe the format of the crystal file,
i.e., the atomic information about the specimen, and the output file, in which the results are stored.

Crystal file format

The crystal file is expected to be in XYZ format.

1. The first line contains the number of atoms.

2. The second line contains the cell dimension in x,y,z direction as floating point numbers in units of nm,
separated by a space.

3. The atomic information is given from the third line onwards, with each line corresponding to a single
atom. Each line must have exactly 5 columns:

• The atomic species as elemental abbreviation (e.g., Ga for gallium)

• the x,y,z coordinates as floating point numbers in units of nm

• the mean square displacement for the frozen lattice dislocations in units of 𝑛𝑚2.

Below is a very brief, artificial example:

5
1.0 2.0 10.0
Ga 0.0 0.0 0.0 1e-5
P 0.2 0.1 0.0 2e-5
Ga 0.0 0.0 1.0 1e-5
P 1.2 0.1 0.0 2e-5
O 1.0 2.0 10.0 0.0

Note: Atomic coordinates outside of the cell are periodically wrapped in x and y and clipped to the simulation
box in z direction!

Output file format

All results of a STEMsalabim simulation are written to a binary NetCDF file. The NetCDF format is based on the
Hierarchical Data Format and there are libraries to read the data for many programming languages.

The structure of NetCDF files is hierarchical and organized in groups. The following groups are written by
STEMsalabim:

runtime

This group contains information about the program and the simulation, such as version, UUID and so on.

AMBER

This group contains the atomic coordinates, species, displacements, radii, etc. for the complete crystal for each
single calculated frozen lattice configuration, as well as for each calculated defocus value. The AMBER group
content is compatible with the AMBER specifications. A STEMsalabim NetCDF file can be opened seamlessly
with the Ovito crystal viewer.

14 Chapter 3. Visualization of crystals and results

https://en.wikipedia.org/wiki/XYZ_file_format
https://en.wikipedia.org/wiki/NetCDF
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
http://ambermd.org/netcdf/nctraj.xhtml
http://www.ovito.org/

STEMsalabim Documentation, Release 3.0.2

params

All simulation parameters are collected in the params group as attributes.

adf

This group contains the simulated ADF intensities, the coordinates of the electron probe beam during scanning,
the detector angle grid that is used, and coordinates of the slices as used in the multi-slice algorithm.

cbed

This group contains the simulated CBED intensities, the coordinates of the electron probe beam during scanning,
k-space grid, and coordinates of the slices as used in the multi-slice algorithm.

Reading NC Files

For a detailed view of the structure, we suggest using the ncdump utility: ncdump -h
some_results_file.nc. As the underlying file format of NetCDF is HDF5, you may use any other
HDF5 viewer to have a look at the results.

There are NetCDF bindings for most popular programming languages.

1. In MATLAB, we recommend using h5read() and the other HDF5 functions.

2. For Python, use the netCDF4 module.

3.3.4 HTTP Status reporting

STEMsalabim simulations may take a long time, even when running them in parallel on many processors. In order
to ease tracking of the status of running simulations, we built reporting via HTTP POST requests into the program.

In order to use that feature, the libCURL library has to be installed and STEMsalabim needs to be linked against
it.

Configure HTTP reporting

To configure HTTP reporting, please add the http_reporting: {} block to your simulations’s pa-
rameter file, containing at least reporting = true; and the url to report to, url = "http://
my_server_address:port/path";.

If you want to use HTTP basic authentication, you may also specify the options auth_user =
"your_user"; and auth_pass = "your_pass";. Note, that HTTP basic auth will be enabled as soon
as auth_user is not empty. You should therefore only fill in that field when you want to use authentication.

Additional, custom payload for the HTTP requests may be specified in the sub-block parameters: {}. Each
key-value pair in this block is translated into JSON and appended to each request. This allows you to use custom
authentication techniques, such as token-based authentication etc.

An example configuration block with HTTP basic authentication may look like this:

http_reporting: {
reporting = true;
url = "http://my_api_endpoint:8000/stemsalabim-reporting";
auth_user = "my_user";
auth_pass = "my_pass";
parameters: {

simulation_category = "suitable for many Nature papers";

3.3. What now? 15

http://www.unidata.ucar.edu/software/netcdf//old_docs/docs_4_1/netcdf/ncdump.html
https://de.mathworks.com/help/matlab/high-level-functions.html
http://unidata.github.io/netcdf4-python/
https://curl.haxx.se/libcurl/
https://en.wikipedia.org/wiki/Basic_access_authentication

STEMsalabim Documentation, Release 3.0.2

}
}

The status requests

In each request that STEMsalabim sends, some JSON payload is common. In addition to the JSON values specified
in the parameter file (see Configure HTTP reporting), the following parameters are always reported:

time: // The currrent date and time
id: // the UUID of the simulation
num_threads: // the number of threads of each MPI processor
num_processors: // the number of MPI processors
num_defoci: // the total number of defoci to calculate
num_configurations: // the total number of frozen phonon configurations to
→˓calculate
event: // A code for what event is reported. see below.

The following four different event codes, each for a different event, are reported:

START_SIMULATION: A simulation is started

This request is sent at the beginning of a simulation. Additional key/value pairs sent are:

event: "START_SIMULATION"
version: // program version
git_commit: // git commit hash of the program version
title: // simulation title

START_DEFOCUS: A defocus iteration is started

This request is sent at the beginning of a defocus iteration. Additional key/value pairs sent are:

event: "START_DEFOCUS"
defocus: // the defocus value in nm
defocus_index: // the index of the defocus, between 0 and num_defoci

START_FP_CONFIGURATION: A frozen phonon iteration is started

This request is sent at the beginning of a frozen phonon configuration. Additional key/value pairs sent are:

event: "START_FP_CONFIGURATION"
defocus: // the defocus value in nm
defocus_index: // the index of the defocus, between 0 and num_defoci
configuration_index: // the index of the configuration, between 0 and num_
→˓configurations

PROGRESS: Progress report

This request is sent during the calculation, typically after each integer percent of the simulation finished. Addi-
tional key/value pairs sent are:

16 Chapter 3. Visualization of crystals and results

STEMsalabim Documentation, Release 3.0.2

event: "START_CONFIGURATION"
defocus: // the defocus value in nm
defocus_index: // the index of the defocus, between 0 and num_defoci
configuration_index: // the index of the configuration, between 0 and num_
→˓configurations
progress: // progress between 0 and 1 of this configuration iteration within this
→˓defocus iteration

FINISH: Simulation finished

This request is sent when the simulation finished. Additional key/value pairs sent are:

event: "FINISH"

How to process the reports

Obviously, in order to register the requests, an HTTP(S) server needs to be running on the target machine. For
example, a very simple server in python using the http://flask.pocoo.org/ package, that only echos the requests,
can be implemented as:

#!/usr/bin/env python

from flask import Flask
from flask import request
import json

app = Flask(__name__)

@app.route('/', methods=['POST'])
def echo():

content = request.get_json()
print(json.dumps(content, indent=4))
return ""

if __name__ == "__main__":
app.run()

Run the script and then start a STEMsalabim simulation to see requests imcoming.

3.3.5 Frequently Asked Questions

What about the name STEMsalabim?

STEMsalabim stems from the word Simsalabim which is known in Germany as what a magician says when casting
spells (see here for a german dictionary entry). Furthermore, the phrase appears in the famous German children’s
song Auf einem Baum ein Kuckuck, where the phrase to our knowledge doesn’t really have any meaning. (The
song is about a cuckoo sitting on a tree and being shot by a huntsman. . .) Most germans will recognize the word.
There is no contextual relation between STEM and the word Simsalabim.

When we first started writing the code we came up with it as a working title and we then simply agreed on keeping
it.

3.3. What now? 17

https://de.wiktionary.org/wiki/Simsalabim
https://de.wikipedia.org/wiki/Auf_einem_Baum_ein_Kuckuck

STEMsalabim Documentation, Release 3.0.2

18 Chapter 3. Visualization of crystals and results

CHAPTER 4

What’s new

4.1 STEMsalabim 3.0.0

January 3rd, 2018

• Reworked input/output file format.

• Reworked CBED storing. Blank areas due to bandwidth limiting are now removed.

• Changes to the configuration, mainly to defocus series.

• Compression can be switched on and off via config file now.

• Prepared the project for adding a Python API in the future.

• Added tapering to smoothen the atomic potential at the edges as explained in I. Lobato, et al, Ultrami-
croscopy 168, 17 (2016).

• Added analysis scripts for Python and MATLAB to the Si 001 example.

4.2 STEMsalabim 2.0.0

August 1st, 2017

• Changed Documentation generator to Sphinx

• Introduced a lot of memory management to prevent memory fragmentation bugs

• split STEMsalabim into a core library and binaries to ease creation of tools

• Added diagnostics output with –print-diagnostics

• Code cleanup and commenting

4.3 STEMsalabim 2.0.0-beta2

April 20th, 2017

• Added possibility to also save CBEDs, i.e., the kx/ky resolved intensities in reciprocal space.

19

https://www.sciencedirect.com/science/article/pii/S030439911630081X
https://www.sciencedirect.com/science/article/pii/S030439911630081X

STEMsalabim Documentation, Release 3.0.2

• Improved documentation.

• Switched to NetCDF C API. Dependency on NetCDF C++ is dropped.

• Switched to distributed (parallel) writing of the NC files, which is required for the CBED feature. This
requires NetCDF C and HDF5 to be compiled with MPI support.

4.4 STEMsalabim 2.0.0-beta

March 27th, 2017

• Lots of code refactoring and cleanup

• Added Doxygen doc strings

• Added Markdown documentation and make doc target to build this website.

• Refined the output file structure

• Added HTTP reporting feature

• Added fixed_slicing option to fix each atom’s slice througout the simulation

• Got rid of the boost libraries to ease compilation and installation

4.5 STEMsalabim 1.0

November 18th, 2016

• Initial release.

20 Chapter 4. What’s new

CHAPTER 5

Citing STEMsalabim

A technical paper introducing STEMsalabim is published in the Ultramicroscopy journal: STEMsalabim article

If you use our program or its results, please cite us. You may use the following bibTeX entry:

@article{Oelerich2017,
title = "STEMsalabim: A high-performance computing cluster friendly code for

→˓scanning transmission electron microscopy image simulations of thin specimens",
journal = "Ultramicroscopy",
volume = "177",
number = "",
pages = "91 - 96",
year = "2017",
note = "",
issn = "0304-3991",
doi = "http://dx.doi.org/10.1016/j.ultramic.2017.03.010",
url = "http://www.sciencedirect.com/science/article/pii/S030439911630300X",
author = "Jan Oliver Oelerich and Lennart Duschek and Jürgen Belz and Andreas

→˓Beyer and Sergei D. Baranovskii and Kerstin Volz",
keywords = "Multislice simulations",
keywords = "Electron scattering factors",
keywords = "MPI",
keywords = "Phonons"

}

21

http://www.sciencedirect.com/science/journal/03043991
http://dx.doi.org/10.1016/j.ultramic.2017.03.010

STEMsalabim Documentation, Release 3.0.2

22 Chapter 5. Citing STEMsalabim

CHAPTER 6

Research articles with simulations from STEMsalabim

6.1 2018

• Composition determination of multinary III/V semiconductors via STEM HAADF multislice simulations
L. Duschek, A. Beyer, J. O. Oelerich, K. Volz

6.2 2017

• Surface relaxation of strained Ga(P,As)/GaP heterostructures investigated by HAADF STEM A. Beyer, L.
Duschek, J. Belz, J. O. Oelerich, K. Jandieri, K. Volz

• Atomic structure of ‘W’-type quantum well heterostructures investigated by aberration-corrected STEM P.
Kuekelhan, A. Beyer, C. Fuchs, M.J. Weseloh, S.W. Koch, W. Stolz, K. Volz

• Influence of surface relaxation of strained layers on atomic resolution ADF imaging A. Beyer, L. Duschek,
J. Belz, J. O. Oelerich, K. Jandieri, K. Volz

• Local Bi ordering in MOVPE grown Ga(As,Bi) investigated by high resolution scanning transmission elec-
tron microscopy A. Beyer, N. Knaub, P. Rosenow, K. Jandieri, P. Ludewig, L. Bannow, S. W.Koch, R.
Tonner, K. Volz

• Influence of surface relaxation of strained layers on atomic resolution ADF imaging A. Beyer, L. Duschek,
J. Belz, J. O. Oelerich, K. Jandieri, K. Volz

• STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron
microscopy image simulations of thin specimens J. O. Oelerich, L. Duschek, J. Belz, A. Beyer, S. D. Bara-
novskii, K. Volz

23

https://doi.org/10.1016/j.ultramic.2017.11.002
https://dx.doi.org/10.1111/jmi.12622
https://dx.doi.org/10.1111/jmi.12647
https://doi.org/10.1016/j.ultramic.2017.04.019
https://doi.org/10.1016/j.apmt.2016.11.007
https://doi.org/10.1016/j.apmt.2016.11.007
https://doi.org/10.1016/j.ultramic.2017.04.019
https://doi.org/10.1016/j.ultramic.2017.03.010
https://doi.org/10.1016/j.ultramic.2017.03.010

	Installing STEMsalabim
	Requirements
	Building STEMsalabim

	Executing STEMsalabim
	Thread-only parallelization
	MPI only parallelization
	Hybrid parallelization
	Running the Si 001 example

	Visualization of crystals and results
	Visualize the supercell with Ovito
	Generate an ADF STEM image
	What now?

	What’s new
	STEMsalabim 3.0.0
	STEMsalabim 2.0.0
	STEMsalabim 2.0.0-beta2
	STEMsalabim 2.0.0-beta
	STEMsalabim 1.0

	Citing STEMsalabim
	Research articles with simulations from STEMsalabim
	2018
	2017

