
STEMsalabim Documentation
Release 5.4.1

Damien Heimes

Jul 13, 2022

Getting Started

1 What STEMsalabim calculates 1
1.1 Background . 1
1.2 Probe wave function . 1
1.3 Multislice Simulation . 2
1.4 Detector . 2

2 Installing STEMsalabim 3
2.1 Requirements . 3
2.2 Downloading the source code . 4
2.3 Building STEMsalabim . 4

3 Running STEMsalabim 7
3.1 Parallel runs . 7
3.2 Si 001 example . 8
3.3 ssb-mkin and ssb-run . 8
3.4 NetCDF files . 9

4 Visualization of crystals and results 11
4.1 Visualize the supercell with Ovito . 11
4.2 Generate an ADF STEM image . 11
4.3 What now? . 12

5 General information 13
5.1 Structure of a simulation . 13
5.2 Hybrid Parallelization model . 14

6 Simulation Parameters 15
6.1 Parameter files . 15
6.2 Command line arguments . 22

7 File formats 25
7.1 Crystal file format . 25
7.2 Output file format . 26
7.3 Reading NC Files . 31

8 Frequently Asked Questions 33
8.1 What about the name STEMsalabim? . 33

9 What’s new 35
9.1 STEMsalabim 5.4.0 . 35
9.2 STEMsalabim 5.3.0 . 36
9.3 STEMsalabim 5.2.0 . 36

i

9.4 STEMsalabim 5.1.1 . 36
9.5 STEMsalabim 5.1.0 . 37
9.6 STEMsalabim 5.0.0 . 37
9.7 STEMsalabim 4.0.1, 4.0.2 . 38
9.8 STEMsalabim 4.0 . 38
9.9 STEMsalabim 3.1.0, 3.1.1, 3.1.2, 3.1.3, 3.1.4 . 38
9.10 STEMsalabim 3.0.1 and 3.0.2 . 39
9.11 STEMsalabim 3.0.0 . 39
9.12 STEMsalabim 2.0.0 . 39
9.13 STEMsalabim 2.0.0-beta2 . 39
9.14 STEMsalabim 2.0.0-beta . 40
9.15 STEMsalabim 1.0 . 40

10 Citing STEMsalabim 41

11 Research done with STEMsalabim 43
11.1 2018 . 43
11.2 2017 . 43

ii

CHAPTER 1

What STEMsalabim calculates

1.1 Background

STEMsalabim simulates the image of a transmission electron microscope (TEM) in scanning mode, i.e., with a
convergent electron beam scanning over the sample. (TEM can also be operated using plane wave illumination,
but this is (currently) not supported by STEMsalabim.

In scanning TEM (STEM) a narrowly focused beam of high energy electrons is focused onto a very thin layer
of some material. Passing through the sample, the incident electrons are scattered by the sample’s coulomb
potential, which is composed of the atomic cores and the sample’s electrons. After leaving the sample the amount
and direction of scattering is detected to gain insight into the sample’s atomic structure, chemical composition,
electric fields, thickness, etc.

Instead of repeating the details of STEM here, we refer the reader to some good literature on the topic:

• Transmission Electron Microscopy by David B. Williams and Barry C. Carter

• Advanced computing in electron microscopy by Earl J. Kirkland

For the details on STEMsalabim’s algorithm and implementation, the following paper is instructive:

• STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron
microscopy image simulations of thin specimens

1.2 Probe wave function

The electron probe in the STEM must be modelled as a coherent electronic wave, since diffraction plays an
essential role in STEM. In STEM simulations, the focused probe wave function Ψ0(𝑥, 𝑦) is modelled as a complex
2D object, and its propagation in beam direction (here, 𝑧) is simulated.

The probe wave function encapsulates all characteristics of the microscope, such as aberrations, aperture, etc. It
is calculated via

Ψ
𝑥𝑝,𝑦𝑝

0 (𝑥, 𝑦) = 𝐵ℱ−1 (𝐴(𝑘𝑥, 𝑘𝑦) exp [−𝑖𝜒(𝑘𝑥, 𝑘𝑦) + 2𝜋𝑖(𝑘𝑥𝑥𝑝 + 𝑘𝑦𝑦𝑝)]) ,

with a normalization constant 𝐵, the aperture function 𝐴(𝑘𝑥, 𝑘𝑦), and the aberration phase error 𝜒(𝑘𝑥, 𝑘𝑦):

𝜒(𝑘𝑥, 𝑘𝑦) =
𝜋𝛼2

𝜆

(︂
−∆𝑓 + 𝐶𝑎 cos(2𝜑− 2𝜑𝑎) +

1

2
𝐶𝑠𝛼

2 +
1

3
𝐶5𝛼

4

)︂
.

1

https://en.wikipedia.org/wiki/Transmission_electron_microscopy
https://www.springer.com/de/book/9780387765006
http://dx.doi.org/10.1007/978-1-4419-6533-2
http://dx.doi.org/10.1016/j.ultramic.2017.03.010
http://dx.doi.org/10.1016/j.ultramic.2017.03.010

STEMsalabim Documentation, Release 5.4.1

The aberration coefficients 𝐶𝑎, 𝐶𝑠, 𝐶5,∆𝑓, 𝜑𝑎 and the aperture radius entering 𝐴(𝑘𝑥, 𝑘𝑦) are parameters of the
microscope and can be freely defined in STEMsalabim. (See Parameter files)

1.3 Multislice Simulation

While passing through the thin sample, the wave function is scattered by the sample’s coulomb potential. In
STEMsalabim, the multi-slice algorithm is implemented to model the interaction of the incoming probe wave
function with the sample’s coulomb potential.

In the multi-slice approximation, the sample is divided into thin slices perpendicular to the beam direction. When
the electrons of the probe have much higher energy than those of the specimen, and the slices are thin enough, the
interaction between an incoming wave function and one of these slices can be described via

Ψ𝑓 (𝑥, 𝑦) = 𝑡(𝑥, 𝑦)Ψ𝑖(𝑥, 𝑦)

where Ψ𝑖(𝑥, 𝑦) is the incoming and Ψ𝑓 (𝑥, 𝑦) the outgoing WF. The 2D transmission function of the slice is 𝑡(𝑥, 𝑦)
depends on the projected coulomb potential 𝑣(𝑥, 𝑦) of the slice:

𝑡(𝑥, 𝑦) = exp(−𝑖𝜎𝑣(𝑥, 𝑦)

with 𝜎 being some relativistic interaction parameter. Clearly, the transmission function 𝑡(𝑥, 𝑦) merely modifies
the phase of the wave function and is therefore sometimes called a weak phase object.

To model the interaction of the probe WF Ψ0(𝑥, 𝑦) with every slice, it is subsequently multiplied with the trans-
mission function of each single slice. In between the slices, the WF is propagated to the next slice by multiplication

with a Fresnel propagator

𝑝(𝑘𝑥, 𝑘𝑦) = exp(𝑖𝜋(𝑘2𝑥 + 𝑘2𝑦)𝜆𝑑𝑧)

with wavelength 𝜆 and slice thickness 𝑑𝑧. Since the propagator is defined in 𝑘-space, an iteration of the multi-slice
approximation is calculated as

Ψ𝑛+1(𝑥, 𝑦) = 𝐹−1 [𝑝(𝑘𝑥, 𝑘𝑦)𝐹 [𝑡(𝑥, 𝑦)Ψ𝑛(𝑥, 𝑦)]]

where 𝐹 and 𝐹−1 are forward and backward 2D Fourier transformations.

1.4 Detector

After the multi-slice simulation, the absolute intensity of the diffracted WF (in 𝑘-space) |Ψ(𝑘𝑥, 𝑘𝑦)|2 is detected.
STEMsalabim supports writing the 2D diffractogram directly to the output file, but it can also calculate and write
the angular dependency |Ψ(|𝑘|)|2. (See Parameter files and Output file format for more information.)

2 Chapter 1. What STEMsalabim calculates

CHAPTER 2

Installing STEMsalabim

2.1 Requirements

The following libraries and tools are needed to successfully compile the code:

• A C++11 compiler (such as gcc/g++ or intel compiler suite).

• CMake > 3.3

• NetCDF

• libConfig >= 1.5

• FFTW3 or Intel’s MKL

• An MPI implementation (such as OpenMPI)

Note: You may find some of the requirements in the repositories of your Linux distribution, at least the compiler,
CMake, and OpenMPI. On Debian or Ubuntu Linux, for example, you can simply run the following command to
download and install all the requirements:

$ apt-get install build-essential \
cmake \
libconfig++-dev \
libfftw3-dev \
libnetcdf-dev \
libopenmpi-dev \
openmpi-bin

Tip: Most of the computing time is spent calculating Fourier transforms, so it is beneficial for STEMsalabim to
use optimized FFT libraries. Sometimes, compiling FFTW or MKL on the target machine enables optimizations
that are not available in precompiled binaries, so this may be worth a try.

3

https://gcc.gnu.org/
https://software.intel.com/en-us/compilers
https://cmake.org/
https://www.unidata.ucar.edu/software/netcdf/
http://www.hyperrealm.com/libconfig/
http://www.fftw.org/
https://software.intel.com/en-us/mkl
http://www.open-mpi.de/

STEMsalabim Documentation, Release 5.4.1

2.2 Downloading the source code

We recommend you download the latest stable release (5.4.1) from the Releases page. If you want the latest
features and/or bugfixes, you can also clone the repository using

$ git clone https://gitlab.com/STRL/STEMsalabim.git
$ git checkout devel # only if you want the devel code.

2.3 Building STEMsalabim

Extract the code archive to some folder on your hard drive, e.g.

$ cd /tmp
$ tar xzf stemsalabim-VERSION.tar.gz

Then, create a build directory and run CMake to generate the build configuration:

$ mkdir /tmp/stemsalabim-build
$ cd /tmp/stemsalabim-build
$ cmake ../stemsalabim-VERSION

Please refer to the CMake documentation for instructions how to specify library paths and other environment
variables, in case the above commands failed. When your libraries exist at non-standard places in your file system,
you can specify the search paths as follows:

$ cmake ../stemsalabim-VERSION \
-DFFTW_ROOT=/my/custom/fftw/ \
-DLIBCONFIG_ROOT=/my/custom/libconfig/ \
-DNETCDF_INCLUDE_DIR=/my/custom/netcdf/include \
-DCMAKE_INSTALL_PREFIX=/usr/local \
-DCMAKE_EXE_LINKER_FLAGS='-Wl,-rpath,/my/custom/lib64:/my/custom/lib' \
-DCMAKE_CXX_COMPILER=/usr/bin/g++

In the above example, some custom library paths are specified and the program’s run-time search path is modified.
If cmake doesn’t detect the correct compiler automatically, you can specify it with -DCMAKE_CXX_COMPILER=.

Having generated the necessary build files with CMake, simply compile the program using make and move it to
the install location with make install:

$ make -j8 # use 8 cores for compilation
$ make install # move the binaries and libraries to the INSTALL_PREFIX path

You are now ready to execute your first simulation.

2.3.1 Building with Intel MKL, Intel compiler (and Intel MPI)

It is possible to use the Intel® Parallel Studio for compilation, which includes the Intel® Math Kernel Library
(MKL) that STEMsalabim can use for discrete fourier transforms instead of FFTW3. If the Intel® MPI Library is
also available, it can be used for MPI communication.

Note: We have tested compiling and running STEMsalabim only with Parallel Studio 2017 so far.

STEMsalabim’s CMake files try to find the necessary libraries themselves, when the folling conditions are true:

1. Either the environment variable MKLROOT is set to a valid install location of the MKL, or the CMake
variable MKL_ROOT (pointing at the same location) is specified.

4 Chapter 2. Installing STEMsalabim

https://gitlab.com/STRL/STEMsalabim/tags
https://cmake.org/documentation/
https://software.intel.com/en-us/parallel-studio-xe
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/intel-mpi-library

STEMsalabim Documentation, Release 5.4.1

2. The CMake variable GCCDIR points to the install directory of a C++11 compatible GCC compiler. This is
important, because the libstdc++ from a GCC install is required for the Intel compilers to use modern
C++ features.

For example, let’s say the Intel suite is installed in /opt/intel and we have GCC 6.3 installed in /opt/
gcc-6.3, then CMake could be invoked like this:

$ export PATH=$PATH:/opt/intel/... # mpicxx and icpc should be in the path!
$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/gcc-6.3/lib64 \

cmake ../source \
-DMKL_ROOT=/opt/intel \
-DCMAKE_CXX_COMPILER=icpc \
-DGCCDIR=/opt/gcc-6.3 \
-D... more CMAKE arguments as described above.

Depending on how your environment variables are set, you may be able to skip the LD_LIBRARY_PATH=..
part. When STEMsalabim is executed, you may again need to specify the library path of the libstdc++, using

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/gcc-6.3/lib64 mpirun -np ... /path/to/
→˓stemsalabim -p ...

Note: Some fiddling with paths and environment variables is probably necessary. It may help to know basic
CMake syntax and have a look at /path/to/stemsalabim/cmake/FindMKL.cmake if CMake is unable
to find something.

2.3. Building STEMsalabim 5

STEMsalabim Documentation, Release 5.4.1

6 Chapter 2. Installing STEMsalabim

CHAPTER 3

Running STEMsalabim

STEMsalabim is executed on the command line and configured via input configuration files in libConfig syntax.
To learn about the structure of the configuration files, please read Parameter files.

Note: Some of configuration parameters can be changed via command line parameters, which are described in
Command line arguments.

STEMsalabim supports both threaded (shared memory) and MPI (distributed memory) parallelization. For most
efficient resource usage we recommend a hybrid approach, where one MPI task is run per node that spawns a
bunch of threads to parallelize the work within the node. (See Hybrid Parallelization model for more information
on how STEMsalabim can be parallelized.)

3.1 Parallel runs

3.1.1 Thread-only parallelization

You can execute STEMsalabim on a single multi-core computer as follows:

$ stemsalabim --params=./my_config_file.cfg --num-threads=32

This will run the simulation configured in my_config_file.cfg on 32 cores, of which 31 are used as workers.

3.1.2 MPI only parallelization

For pure MPI parallelization without spawning additional threads, STEMsalabim must be called via mpirun or
mpiexec, depending on the MPI implementation available on your machine:

$ mpirun -n 32 stemsalabim --params=./my_config_file.cfg --num-threads=1 --package-
→˓size=10

This command will run the simulation in parallel on 32 MPI processors without spawning additional threads.

7

http://www.hyperrealm.com/libconfig/libconfig_manual.html#Configuration-Files

STEMsalabim Documentation, Release 5.4.1

Note: We chose a work package size ten times the number of threads on each MPI processor (which is 1 here).
This is so that each thread calculates (on average) ten pixels until results are communicated via the network. This
reduces management overhead but increases the amount of data sent via the network.

3.1.3 Hybrid parallelization

Hybrid parallelization is the recommended mode to run STEMsalabim.

For hybrid parallelization, make sure that on each node only a single MPI process is spawned and that there is no
CPU pinning active, i.e., STEMsalabim needs to be able to spawn threads on different cores.

For example, if we wanted to run a simulation in parallel on 32 machines using OpenMPI and on each machine
use 16 cores, we would run

$ mpirun -n 32 --bind-to none --map-by ppr:1:node:pe=16 \
stemsalabim \

--params=./my_config_file.cfg \
--num-threads=16 \
--package-size=160

The options --bind-to none --map-by ppr:1:node:pe=16 tell OpenMPI not to bind the process to
anything and to reserve 16 threads for each instance. Please refer to the manual of your MPI implementation to
figure out how start a hybrid parallelization run. On computing clusters, node and/or socket topology may affect
performance, so it is wise to consult your cluster admin team.

3.2 Si 001 example

In the source code archive you find an examples/Si_001 folder that contains a simple example that you can
execute to get started. The file Si_001.xyz describes a 2x2x36 unit cell Si sample. Please see Crystal file
format for the format description.

In the file Si_001.cfg we find the simulation configuration / parameters. The file contains all available param-
eters, regardless of whether they are set to their default value. We recommend to always specify a complete set of
simulation parameters in the configuration files.

You can now run the simulation:

$ /path/to/stemsalabim --params Si_001.cfg --num-threads=8

After the simulation finished (about 3 hours on an Intel i7 CPU with 8 cores) you can analyze the results found in
Si_001.nc. Please see the next page (Visualization of crystals and results) for details.

3.3 ssb-mkin and ssb-run

Along with the main stemsalabim binary, the ssb-mkin and ssb-run tools are also compiled and put into
your bin/ directory.

ssb-run can be used to start a STEMsalabim simulation from an existing NetCDF file. Results in the file are
discarded and all required parameters are read from the file. Most importantly, the generated atomic displacements
for all the frozen phonon configurations are read from the file, so that starting from an NetCDF file ssb-run
should always produce the exact same results.

ssb-mkin is the complementary tool to ssb-run, generating an input NetCDF file from a parameter file (see
Parameter files) and a crystal file (see Crystal file format). The output of ssb-mkin is identical to the output of
stemsalabim, except that it doesn’t contain any results.

8 Chapter 3. Running STEMsalabim

STEMsalabim Documentation, Release 5.4.1

$ /path/to/ssb-mkin --params Si_001.cfg --output-file Si_001.nc
$ /path/to/ssb-run --params Si_001.nc --num-threads=8

The above two commands are identical to the example in Si 001 example.

The intermediate Si_001.nc file is small (as it contains no results) and contains everything required
to start a simulation. It is therefore well-suited for backing up or sending around. In addition, the
--stored-potentials parameter can be used.

3.3.1 –stored-potentials

Both ssb-mkin and ssb-run accept the --stored-potentials command line parameter. When it is
specified, the scattering Coulomb potentials are calculated already while running ssb-mkin and written to the
NetCDF file in AMBER/slice_potentials. ssb-run then reads the potentials from the file and starts the
multi-slice simulation without recalculating the potentials.

This is useful for inspecting and modifying potentials prior to the simulation.

3.4 NetCDF files

STEMsalabim writes its results and a bunch of information about the simulation to in NetCDF binary format.
NetCDF is a hierarchical storage format for storing multi-dimensional data. It is (most of the times) based on
HDF5.

Please see Output file format for more information how to read / write NetCDF files.

3.4. NetCDF files 9

https://en.wikipedia.org/wiki/NetCDF
https://en.wikipedia.org/wiki/Hierarchical_Data_Format

STEMsalabim Documentation, Release 5.4.1

10 Chapter 3. Running STEMsalabim

CHAPTER 4

Visualization of crystals and results

Now that our simulation finished successfully, we can continue with visualizing the results.

4.1 Visualize the supercell with Ovito

The STEMsalabim output files (somewhat) comply with the AMBER specifications to visualize the specimen
structure. However, all the dimensions and variables of AMBER live within the NetCDF group /AMBER in the
NC file. This means that STEMsalabim output files will not be compatible to visualization programs requiring
the pure AMBER specs!

However, the authors of the excellent cross-platform Ovito software, which is a visualization program for atomic
structures (and much more), have added support for the /AMBER sub-group, so that STEMsalabim NetCDF result
files can be visualized seamlessly in Ovito.

What you will see is the atomic structure of the input specimen. In addition to the positional coordi-
nates of each atom, you find the mean square displacement (msd), the slice ID and coordinate (slice and
slice_coordinates), the equilibrium coordinates (lattice_coordinates), elements (elements)
and atomic radii (radii) as variables. Each frozen lattice configuration is one frame in the AMBER specs,
so you can see the atoms wiggling around if you use the frame slider of Ovito.

4.2 Generate an ADF STEM image

In the examples/Si_001 folder you will find the two files make_haadf.m and make_haadf.py. Both
extract an HAADF image from the result NetCDF file. Please have a look at the code to get an idea of how to
work with the NetCDF result files.

• MATLAB® uses HDF5 for its .mat format for a couple of versions now, and is therefore perfectly capable
of reading STEMsalabim result files. For quick analysis and image generation is a great tool.

• Python with the NetCDF4 module is also a great tool to analyze and visualize STEMsalabim result files,
especially combined with numerical libraries such as numpy or pandas.

11

http://ambermd.org/netcdf/nctraj.xhtml
https://www.ovito.org/
https://de.mathworks.com/products/matlab.html
http://unidata.github.io/netcdf4-python/
http://www.numpy.org/
https://pandas.pydata.org/

STEMsalabim Documentation, Release 5.4.1

4.3 What now?

You have now completed your first simulation and looked at some of its results. In order to use STEMsalabim for
your research you should dig deeper into this documentation by reading the documentation links on the left.

12 Chapter 4. Visualization of crystals and results

CHAPTER 5

General information

Warning: This documentation is not really complete (yet).

Throughout this documentation we assume that you are familiar with the theoretical background behind the scan-
ning transmission electron microscope (STEM) to some degree. Also, we assume that you have some knowledge
about the UNIX/Linux command line and parallelized computation. STEMsalabim is currently not intended to be
run on a desktop computer. While that is possible and works, the main purpose of the program is to be used in a
highly parallelized multi-computer environment.

We took great care of making STEMsalabim easy to install. You can find instructions at Installing STEMsalabim.
However, if you run into technical problems you should seek help from an administrator of your computer cluster
first.

5.1 Structure of a simulation

There essence of STEMsalabim is to model the interaction of a focused electron beam with a bunch of atoms,
typically in the form of a crystalline sample. Given the necessary input files, the simulation crunches numbers
for some time, after which all of the calculated results can be found in the output file. Please refer to Running
STEMsalabim for notes how to start a simulation.

5.1.1 Input files

All information about the specimen are listed in the Crystal file format, which is one of the two required input
files for STEMsalabim. It contains each atom’s species (element), coordinates, and mean square displacement as
it appears in the Debye-Waller factors.

In addition, you need to supply a Parameter files for each simulation, containing information about the micro-
scope, detector, and all required simulation parameters. All these parameters are given in a specific syntax in the
Parameter files that are always required for starting a STEMsalabim* simulation.

13

https://en.wikipedia.org/wiki/Mean_squared_displacement
https://en.wikipedia.org/wiki/Debye%E2%80%93Waller_factor

STEMsalabim Documentation, Release 5.4.1

5.1.2 Output files

The complete output of a STEMsalabim simulation is written to a NetCDF file. NetCDF is a binary, hierarchical
file format for scientific data, based on HDF5. NetCDF/HDF5 allow us to compress the output data and store it in
machine-readable, organized format while still only having to deal with a single output file.

You can read more about the output file structure at Output file format.

5.2 Hybrid Parallelization model

STEMsalabim simulations is parallelized both via POSIX threads and via message passing interface (MPI). A
typical simulation will use both schemes at the same time: MPI is used for communication between the computing
nodes, and threads are used for intra-node parallelization, the usual multi-cpu/multi-core structure.

Hint: A high performance computation cluster is an array of many (equal) computing nodes. Typical highly-
parallelized software uses more than one of the nodes for parallel computations. There is usually no memory
that is shared between the nodes, so all information required for the management of parallel computing needs to
be explicitely communicated between the processes on the different machines. The quasi-standard for that is the
message passing interface (MPI).

Let us assume a simulation that runs on 𝑀 computers and each of them spawns 𝑁 threads.

Depending on the simulation parameters chosen, STEMsalabim may need to loop through multiple frozen phonon
configurations and values of the probe defocus. The same simulation (with differently displaced atoms and differ-
ent probe defocus) is therefore typically run multiple times. There are three parallelization schemes implemented
in STEMsalabim:

• When 𝑀 == 1, i.e., no MPI parallelization is used, all pixels (probe positions) are distributed among the
𝑁 threads and calculated in parallel.

• Each MPI processor calculates all pixels (probe positions) of its own frozen phonon / defocus configuration,
i.e., 𝑀 configurations are calculated in parallel. Each of the 𝑀 calculations splits its pixels between 𝑁
threads (each thread calculates one pixel at a time).

This scheme makes sense when the total number of configurations (probe.num_defoci ×
frozen_phonon.number_configurations) is much larger than or divisible by 𝑀 .

• A single configuration is calculated at a time, and all the pixels are split between all 𝑀×𝑁 threads. In order
to reduce the required MPI communication around, only the main thread of each of the 𝑀 MPI processors
communicates with the master thread. The master thread sends a work package containing some number
of probe pixels to be calculated to an MPI process, which then carries out all the calculations in parallel
on its 𝑁 threads. When a work package is finished, it requests another work package from the master MPI
process until there is no work left. In parallel, the worker threads of the MPI process with rank 0 also work
on emptying the work queue.

In MPI mode, each MPI process writes results to its own temporary file, and after each frozen lattice configuration
the results are merged. Merging is carried out sequentially by each individual MPI processor, to avoid race
conditions. The parameter output.tmp_dir (see Parameter files) should be set to a directory that is local to
each MPI processor (e.g., /tmp).

Note: Within one MPI processor, the threads can share their memory. As the main memory consumption
comes from storing the weak phase objects of the slices in the multi-slice simulation, which don’t change during
the actual simulation, this greatly reduces memory usage as compared to MPI only parallelization. You should
therefore always aim for hybrid parallelization!

14 Chapter 5. General information

https://www.unidata.ucar.edu/software/netcdf/
https://support.hdfgroup.org/HDF5/
https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface

CHAPTER 6

Simulation Parameters

A STEMsalabim simulation is mainly configured via parameter files, with a few exceptions where configuration
options may be overriden by command line arguments.

6.1 Parameter files

The configuration file that STEMsalabim expects for the command line parameter --params is formatted using
the simple JSON-like syntax of libConfig syntax. Below all available parameters are tabulated. Each section
(block in the libConfig syntax) is described separately below.

6.1.1 application

The application block contains general settings regarding the simulation.

application: {
random_seed = 0; # the random seed. 0 -> generate

}

application.random_seed unsigned int [default: ‘0‘]

In the frozen lattice approximation, the atoms are randomly dislocated from their equilibrium position. The
random seed for that can be specified here. If set to 0, a random seed is generated by the program. For
reproduction of previous results, the seed can be set to a specific value. This random seed is also used for
the generation of the positions of the plasmon scattering function.

6.1.2 simulation

Some general settings specific to this simulation.

simulation: {
title = "benchmarksmall"; # title of the simulation
bandwidth_limiting = true; # bandwidth limit the wave functions?
normalize_always = false; # normalize wave functions after each

→˓slice?
output_file = "out.nc"; # output file name

(continues on next page)

15

http://www.hyperrealm.com/libconfig/

STEMsalabim Documentation, Release 5.4.1

(continued from previous page)

tmp_dir = "/tmp/"; # directory for temporary files.
output_compress = "false"; # compress output data. This reduces file

→˓sizes, but increases IO times.
chunking_enabled = "true"; # chunk the stored data.
save_probe_wavefunction = "false" # save the probe wavefunction at each scan

→˓point
}

simulation.title string [default: ‘‘]

The title of the simulation, as saved in the output NC file.

simulation.bandwidth_limiting boolean [default: ‘true‘]

Enforce cylindrical symmetry on all wave functions/operations. This results in all wave functions to be
clipped significantly in momentum space. However, the benefit of reduced artefacts due to periodic bound-
ary conditions is usually more important.

simulation.normalize_always boolean [default: ‘false‘]

Renormalize the electronic wave function after each slice of the multi-slice approximation, so that lost
intensitiy due to limited k space grid is compensated for. Usually, this is not necessary, so the default is
false.

simulation.output_file string [default: ‘‘]

Path to the result NetCDF file. Please read Output file format to learn about its format. Relative paths are
interpreted relative to the working directory of the simulation.

simulation.tmp_dir string [default: ‘folder of ouput file‘]

When MPI parallelized, all MPI processors will write their results to temporary binary files in this directory,
and only at the end of each frozen lattice configuration, the results are merged. We recommend using a local
directory here (local to each MPI processor) so that access is fast. By default, the directory of the output
file is used, which typically is not local but on a network file system. This can have a profound effect when
CBED results are collected, i.e., output becomes large.

simulation.output_compress boolean [default: ‘false‘]

The written output data can be compressed by HDF5. This obviously takes more I/O time, but reduces
output file sizes.

simulation.chunking_enabled boolean [default: ‘true‘]

The written output data is chunked by default. If the output gets too big, especially when CBEDs are
enabled, errors can occur. These can be prevented by switching the chunking off.

simulation.save_probe_wavefunction boolean [default: ‘false‘]

This switch allows to save the probe wave function at each scan point. This may slow down the simu-
lation because of the IO operations for each pixel by possibly different threads and MPI processes. The
wavefunctions are stored in text files as complex numbers.

6.1.3 probe

Parameters of the STEM probe.

probe: {
c5 = 5e6; # Fifth order spherical aberrations

→˓coefficient. in nm
cs = 2e3; # Third order spherical aberrations

→˓coefficient. in nm
defocus = 0; # defocus value in nm
delta_defocus_max = 6.0; # The maximum value which will be added/

→˓subtracted to/from the mean defocus value to determine the defoci to use for
→˓defocus series for Cc. in nm

(continues on next page)

16 Chapter 6. Simulation Parameters

STEMsalabim Documentation, Release 5.4.1

(continued from previous page)

fwhm_defocus_distribution = 7.5 # Full width at half maximum of the
→˓Gaussian which determines the defocus weigths for defocus series for Cc. in nm

num_defoci = 1; # number of the defoci when simulating a
→˓defocus series for Cc. Should be odd.

astigmatism_ca = 0; # Two-fold astigmatism. in nm
astigmatism_angle = 0; # Two-fold astigmatism angle. in mrad
min_apert = 0.0; # Minimum numerical aperture of the

→˓objective. in mrad
max_apert = 24.0; # Maximum numerical aperture of the

→˓objective. in mrad
beam_energy = 200.0; # Electron beam energy. in kV
scan_density = 40; # The sampling density for the electron

→˓probe scanning. in 1/nm
}

probe.c5 number (nm) [default: ‘5e7‘]

Fifth order spherical aberrations coefficient.

probe.cs number (nm) [default: ‘2e4‘]

Third order spherical aberrations coefficient.

probe.defocus number (nm) [default: ‘0‘]

Probe defocus.

probe.delta_defocus_max number (nm) [default: ‘6.0‘]

STEMsalabim can calculate a defocus series to model chromatic aberrations. In that case, this parameter is
the maximum value which will be added/subtracted to/from the mean defocus value to determine the defoci
to use for defocus series for Cc. e.g. the ensemble (probe.defocus = 0, probe.delta_defocus_max = 12,
probe.num_defoci = 7) would give the defoci [-12, -8, -4, 0, 4, 8, 12].

probe.fwhm_defocus_distribution number (nm) [default: ‘7.5‘]

STEMsalabim can calculate a defocus series to model chromatic aberrations. In that case, this parameter
is the full width at half maximum of the Gaussian which determines the defocus weigths. It comes from
equation (2) in [Beyer, A., et al., Journal of microscopy 262.2 (2016): 171-177., https://onlinelibrary.wiley.
com/doi/10.1111/jmi.12284]. The default value of 7.5 is “for the JEOL JEM-2200 FS microscope with a
CC of 1.5 mm and a dE of 0.42 eV follows a [fwhm_defocus_distribution] of 7.5 nm at 200 kV acceleration
voltage “

probe.num_defoci number [default: ‘1‘]

STEMsalabim can calculate a defocus series to model chromatic aberrations. In that case, this parameter is
the number of defoci calculated.

probe.astigmatism_ca number (nm) [default: ‘0‘]

Two-fold astigmatism.

probe.astigmatism_angle number (mrad) [default: ‘0‘]

Two-fold astigmatism angle.

probe.min_apert number (mrad) [default: ‘0‘]

Minimum numerical aperture of the objective.

probe.max_apert number (mrad) [default: ‘24‘]

Maximum numerical aperture of the objective.

probe.beam_energy number (keV) [default: ‘200‘]

Electron beam energy.

probe.scan_density number (1/nm) [default: ‘40.0‘]

6.1. Parameter files 17

https://onlinelibrary.wiley.com/doi/10.1111/jmi.12284
https://onlinelibrary.wiley.com/doi/10.1111/jmi.12284

STEMsalabim Documentation, Release 5.4.1

The sampling density for the electron probe scanning. This number multiplied by the supercell size in 𝑥 and
𝑦 direction gives the number of positions, i.e., scan points, that are simulated.

6.1.4 specimen

Settings for the specimen and potentials.

specimen: {
max_potential_radius = 0.3; # potential cut-off radius. in nm
crystal_file = "input.xyz"; # xyz file with columns [Element, x, y, z, MSD]

}

specimen.max_potential_radius number (nm) [default: ‘0.3‘]

Distance, after which the atomic potentials are cut off during generation of the slices’ transmission functions.

specimen.crystal_file string [default: ‘””‘]

Path to the file containing the atomic coordinates. Please see Crystal file format to learn about its format.
Relative paths are interpreted relative to the working directory of the simulation.

6.1.5 grating

Settings that describe the multi-slice algorithm, i.e., the density of the discretization and the slice thickness.

grating: {
density = 360.0; # The density for the real space and fourier

→˓space grids. in 1/nm
slice_thickness = 0.2715; # Multi-slice slice thickness. in nm

}

grating.density number (1/nm) [default: ‘360.0‘]

The density for the real space and fourier space grids. This number multiplied by the supercell size in 𝑥 and
𝑦 direction gives the minimal number of sampling grid points for the calculation. The actual grid size used
for the simulation may be bigger than that, as an efficient size for the fourier transforms is chosen. This also
determines the maximum angle 𝛼 = 𝑘𝜆 that is described by the 𝑘-space grids.

grating.slice_thickness number (nm) [default: ‘0.2715‘]

The thickness of the slices in the multi-slice algorithm.

6.1.6 adf

Settings for collection of ADF data.

adf: {
enabled = true; # enable calculation and collection of ADF

→˓intensities
x = (0.0, 1.0); # [min, max] where min and max are in relative

→˓units
y = (0.0, 1.0); # [min, max] where min and max are in relative

→˓units
detector_min_angle = 1.0; # inner detector angle in mrad
detector_max_angle = 300.0; # outer detector angle in mrad
detector_num_angles = 300; # number of bins of the ADF detector.
detector_interval_exponent = 1.0; # possibility to set non-linear detector

→˓bins.
save_slices_every = 0; # save only every n slices. 0 -> only the sample

→˓bottom is saved.

(continues on next page)

18 Chapter 6. Simulation Parameters

STEMsalabim Documentation, Release 5.4.1

(continued from previous page)

average_configurations = true; # average the frozen phonon configurations in
→˓the output file

average_defoci = true; # average the defoci in the output file
}

adf.enabled boolean [default: ‘true‘]

Enable or disable calculation of ADF intensities completely.

adf.x array [default: ‘[0.0,1.0]‘]

The relative coordinates, between which the supercell is scanned by the electron probe. When [0.0,
1.0], the whole x width of the supercell is scanned.

adf.y array [default: ‘[0.0,1.0]‘]

The relative coordinates, between which the supercell is scanned by the electron probe. When [0.0,
1.0], the whole y width of the supercell is scanned.

adf.detector_min_angle number (mrad) [default: ‘0.0‘]

Inner ADF detector angle in mrad.

adf.detector_max_angle number (mrad) [default: ‘300.0‘]

Outer ADF detector angle in mrad.

adf.detector_num_angles number [default: ‘301‘]

Number of ADF detector angle bins.

adf.detector_interval_exponent number [default: ‘1.0‘]

A non-linear grid spacing of the detector grid can be chosen to increase the sampling at smaller angles. The
ith grid point between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 is calculated by 𝜃𝑖 = 𝜃𝑚𝑖𝑛 + (𝑖/𝑁)𝑝(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛), where p is
the interval exponent and 𝑁 is the number of grid points as given by detector.angles. When set to 1.0, the
grid is linear.

Note: A fundamental lower limit for the grid spacing is given by the grating.density density. Finer sampling
than the grating density will result in odd artefacts!

adf.save_slices_every integer [default: ‘1‘]

The ADF intensity is calculated and stored after every slice that is a multiple of this parameter. The default
value of 1 results in every slice to be saved, higher numbers skip slices. The value 0 corresponds to the
intensity only being saved after the last slice, i.e., at the sample bottom.

adf.average_configurations boolean [default: ‘true‘]

Whether or not to perform in-place averaging over frozen lattice configurations during writing to the output
file.

adf.average_defoci boolean [default: ‘true‘]

Whether or not to perform in-place (weighted) averaging over defoci during writing to the output file.

6.1.7 cbed

Settings for collection of CBEDs.

Note: Storing CBEDs will increase the output file size drastically. Moreover, the information contained in the
CBEDs may be redundant to the ADF data.

6.1. Parameter files 19

STEMsalabim Documentation, Release 5.4.1

cbed: {
enabled = true; # enable calculation and collection of CBED

→˓intensities
x = (0.0, 1.0); # [min, max] where min and max are in relative

→˓units
y = (0.0, 1.0); # [min, max] where min and max are in relative

→˓units
size = [128, 128]; # When provided, this parameter determines the

→˓size of CBEDs saved
to the output file. The CBEDs are resized

→˓using bilinear interpolation.
save_slices_every = 0; # save only every n slices. 0 -> only the

→˓sample bottom is saved.
average_configurations = true; # average the frozen phonon configurations in

→˓the output file
average_defoci = true; # average the defoci in the output file

}

cbed.enabled boolean [default: ‘false‘]

Enable or disable calculation of CBED intensities completely.

cbed.x array [default: ‘[0.0,1.0]‘]

The relative x coordinates, between which CBED images are to be saved. When [0.0, 1.0], the whole
y width of the supercell is scanned.

cbed.y array [default: ‘[0.0,1.0]‘]

The relative y coordinates, between which CBED images are to be saved. When [0.0, 1.0], the whole
y width of the supercell is scanned.

cbed.size array [default: ‘[0.0,0.0]‘]

Width and height of the CBEDs. Saving CBEDs can become very disk-space intensive, especially when the
k grids are huge (as required for big samples). When this parameter is given, one can choose the size of
the CBEDs that are saved to the output file. The images are reduced using bilinear interpolation. The total
intensity is preserved. Leave the parameter out or set any direction to 0 to use the original size.

cbed.save_slices_every integer [default: ‘1‘]

The STEM intensity is calculated and stored after every slice that is a multiple of this parameter. The default
value of 1 results in every slice to be saved, higher numbers skip slices. The value 0 corresponds to the
intensity only being saved after the last slice, i.e., at the sample bottom.

cbed.average_configurations boolean [default: ‘true‘]

Whether or not to perform in-place averaging over frozen lattice configurations during writing to the output
file.

cbed.average_defoci boolean [default: ‘true‘]

Whether or not to perform in-place (weighted) averaging over defoci during writing to the output file.

6.1.8 frozen_phonon

Settings for the frozen_phonon algorithm to simulate TDS.

frozen_phonon: {
enabled = true; # enable or disable the frozen phonon feature
number_configurations = 15; # Number of frozen phonon configurations to

→˓calculate
fixed_slicing = true; # When this is true, the z coordinate is not

→˓varied during phonon vibrations.
}

20 Chapter 6. Simulation Parameters

https://en.wikipedia.org/wiki/Bilinear_interpolation

STEMsalabim Documentation, Release 5.4.1

frozen_phonon.enabled boolean [default: ‘true‘]

Whether diffuse thermal scattering via frozen phonon approximation should be enabled.

frozen_phonon.number_configurations integer [default: ‘1‘]

Number of frozen phonon configurations to calculate.

frozen_phonon.fixed_slicing boolean [default: ‘true‘]

When true, the z coordinates (beam direction) of the atoms is not varied, resulting in fixed slicing between
subsequent frozen phonon configurations.

6.1.9 plasmon_scattering

Settings for the single plasmon scattering.

plasmon_scattering: {
enabled = true; # enable or disable the feature
mean_free_path = 120; # mean free path of a plasmon in nm
plasmon_energy = 16.7; # plasmon energy in eV
plasmon_fwhm = 3.7; # plasmon energy FWHM in eV
plasmons_scatteringfunction_cutoff = 3; # radial cutoff of the plasmon

→˓scattering function. in nm
number_of_potential_positionsPerSlice = 0; # the number of the positions to

→˓which the plasmon scattering function is translated
calculate_plasmons_in_all_slices = true; # calculate plasmon scattering in

→˓all slices?
}

plasmon_scattering.enabled boolean [default: ‘false‘]

Whether to enable plasmon scattering.

plasmon_scattering.mean_free_path float (nm) [default: ‘120‘]

Mean free path of the plasmons in the material.

plasmon_scattering.plasmon_energy float (eV) [default: ‘16.7‘]

Characteristic energy of the material’s plasmons.

plasmon_scattering.plasmon_fwhm float (eV) [default: ‘3.7‘]

Full width half maximum of the plasmon peak of the spectrum.

plasmons_scatteringfunction_cutoff [default: ‘3‘] The radial cutoff of the plasmon scattering function.

number_of_potential_positionsPerSlice [default: ‘0‘] The number of the random positions, to which the plas-
mon scattering function is translated.

calculate_plasmons_in_all_slices [default: ‘‘] Choose if plasmon scattering will be calculated in all slices, or
just in the last one, i.e. at the full specimen thickness.

6.1.10 specimen tilt

Settings for specimen tilt.

specimen_tilt: {
enabled = false; # enable specimen tilt
tilt_angle_x_mrad = 0; # tilt angle in x direction in mrad
tilt_angle_y_mrad = 0; # tilt angle in y direction in mrad

}

6.1. Parameter files 21

STEMsalabim Documentation, Release 5.4.1

specimen_tilt.enabled boolean [default: ‘false‘]

Whether to enable specimen tilt.

specimen_tilt.tilt_angle_x_mrad float (eV) [default: ‘0‘]

The tilt angle in x direction in mrad.

specimen_tilt.tilt_angle_y_mrad float (eV) [default: ‘0‘]

The tilt angle in y direction in mrad.

6.2 Command line arguments

6.2.1 stemsalabim

–help, -h flag

Display a help message with a brief description of available command line parameters.

–params, -p string (required)

Path to the configuration file as explained above in Parameter files files.

–num-threads integer [default: ‘1‘]

Number of threads per MPI core. Note, that STEMsalabim will do nothing if only parallelized via threads
and --num-threads=1, as thread 0 of the master MPI process does not participate in the calculation.
See Hybrid Parallelization model for details.

–package-size integer [default: ‘10‘]

The number of tasks that are sent to an MPI process. This should scale with the number of threads each
MPI process spawns. A good value is 10× the value of –num_threads.

–tmp-dir string

Override the value of the output.tmp_dir setting.

–output-file, -o string

Override the value of the output.output_file setting.

–crystal-file, -c string

Override the value of the specimen.crystal_file setting.

6.2.2 ssb-mkin

–help, -h flag

Display a help message with a brief description of available command line parameters.

–params, -p string (required)

Path to the configuration file as explained above in Parameter files files.

–num-threads integer [default: ‘1‘]

Number of threads per MPI core. Note, that STEMsalabim will do nothing if only parallelized via threads
and --num-threads=1, as thread 0 of the master MPI process does not participate in the calculation.
See Hybrid Parallelization model for details.

–output-file, -o string

Override the value of the output.output_file setting.

22 Chapter 6. Simulation Parameters

STEMsalabim Documentation, Release 5.4.1

–crystal-file, -c string

Override the value of the specimen.crystal_file setting.

–stored-potentials flag

When set, ssb-mkin calculates the slice coulomb potentials and stores them in the usual NetCDF output
file or an external file, depending on whether or not --use-external-potential-file is set. When
ssb-run is also called with --stored-potentials, the potentials are read from the file instead of
being recalculated.

–use-external-potential-file flag

If set to true and also --stored-potentials is set, slice coulomb potentials will be saved in the file
given via --external-potential-file instead of saving them in the usual netcdf output file. If not
set but --stored-potentials is set, the potentials will be stored in the usual netcdf output file.

–external-potential-file string [default: stored_potentials.nc]

Path to the file which shall store the slice coulomb potentials.

6.2.3 ssb-run

–help, -h flag

Display a help message with a brief description of available command line parameters.

–params, -p string (required)

Path to the configuration file as explained above in Parameter files files.

–num-threads integer [default: ‘1‘]

Number of threads per MPI core. Note, that STEMsalabim will do nothing if only parallelized via threads
and --num-threads=1, as thread 0 of the master MPI process does not participate in the calculation.
See Hybrid Parallelization model for details.

–package-size integer [default: ‘10‘]

The number of tasks that are sent to an MPI process. This should scale with the number of threads each
MPI process spawns. A good value is 10× the value of –num_threads.

–tmp-dir string

Override the value of the output.tmp_dir setting.

–output-file, -o string

Override the value of the output.output_file setting.

–stored-potentials flag

When set, ssb-run reads the slice coulomb potentials from a NetCDF file. They must have
been calculated via ssb-mkin --stored-potentials Depending on whether or not
--use-external-potential-file is set, the potentials are read from the usual NetCDF output
file or another file.

–use-external-potential-file flag

If set to true and also --stored-potentials is set, potentials from the file given via
--external-potential-file will be used. If not set but --stored-potentials is set, it is
assumed that the potentials are stored inside the usual NetCDF output file.

–external-potential-file string [default: stored_potentials.nc]

Path to the file which stores the scattering potentials. This file can either be a NetCDF file which only holds
the potentials, or the usual NetCDF output file which also stores the potentials.

6.2. Command line arguments 23

STEMsalabim Documentation, Release 5.4.1

24 Chapter 6. Simulation Parameters

CHAPTER 7

File formats

A STEMsalabim simulation is set-up via input files and its results are stored in an output file. The file for
configuring a simulation is described in detail at Parameter files. Here, we describe the format of the crystal file,
i.e., the atomic information about the specimen, and the output file, in which the results are stored.

7.1 Crystal file format

The crystal file is expected to be in XYZ format.

1. The first line contains the number of atoms.

2. The second line contains the cell dimension in x,y,z direction as floating point numbers in units of nm,
separated by a space. Optionally, it can contain the x, y, z dimensions in the .exyz format:

Lattice="lx 0.0 0.0 0.0 ly 0.0 0.0 0.0 lz"

3. The atomic information is given from the third line onwards, with each line corresponding to a single
atom. Each line must have exactly 5 columns:

• The atomic species as elemental abbreviation (e.g., Ga for gallium)

• the x,y,z coordinates as floating point numbers in units of nm

• the mean square displacement for the frozen lattice dislocations in units of 𝑛𝑚2.

• (optional) The id of the slice this atom belongs to. This can be used to do custom slicing.

Below is a very brief, artificial example (without custom slicing):

5
1.0 2.0 10.0
Ga 0.0 0.0 0.0 1e-5
P 0.2 0.1 0.0 2e-5
Ga 0.0 0.0 1.0 1e-5
P 1.2 0.1 0.0 2e-5
O 1.0 2.0 10.0 0.0

25

https://en.wikipedia.org/wiki/XYZ_file_format

STEMsalabim Documentation, Release 5.4.1

Note: Atomic coordinates outside of the cell are periodically wrapped in x and y and clipped to the simulation
box in z direction!

7.2 Output file format

All results of a STEMsalabim simulation are written to a binary NetCDF file. The NetCDF format is based on the
Hierarchical Data Format and there are libraries to read the data for many programming languages.

The structure of NetCDF files can be inspected using the handy tool ncdump -h YOUR_FILE.nc (don’t forget
the -h parameter, otherwise the whole content of the file is dumped!). Here is the output of an example run:

netcdf out {

group: AMBER {
dimensions:
atom = 164140 ;
elements = 1 ;
spatial = 3 ;
cell_spatial = 3 ;
cell_angular = 3 ;
label = 6 ;
frame = 10 ;
slices = 142 ;
grid_x = 490 ;
grid_y = 490 ;

variables:
char spatial(spatial) ;
char cell_spatial(cell_spatial) ;
char cell_angular(cell_angular, label) ;
float coordinates(frame, atom, spatial) ;

coordinates:unit = "nanometer" ;
float lattice_coordinates(frame, atom, spatial) ;
float cell_lengths(frame, cell_spatial) ;

cell_lengths:unit = "nanometer" ;
float cell_angles(frame, cell_angular) ;

cell_angles:unit = "degree" ;
float radius(frame, atom) ;

radius:unit = "nanometer" ;
float msd(frame, atom) ;
int slice(frame, atom) ;
float slice_coordinates(slices) ;
short element(frame, atom) ;
float system_lengths(cell_spatial) ;
float system_angles(cell_spatial) ;
char atom_types(elements, label) ;

// group attributes:
:Conventions = "AMBER" ;
:ConventionVersion = "1.0" ;
:program = "STEMsalabim" ;
:programVersion = "5.0.0b" ;
:title = "sim" ;

} // group AMBER

group: runtime {

// group attributes:
:programVersionMajor = "5" ;

(continues on next page)

26 Chapter 7. File formats

https://en.wikipedia.org/wiki/NetCDF
https://en.wikipedia.org/wiki/Hierarchical_Data_Format

STEMsalabim Documentation, Release 5.4.1

(continued from previous page)

:programVersionMinor = "0" ;
:programVersionPatch = "0b" ;
:gitCommit = "f1dcc606c9a78b12fc3afda9496f638992b591bf" ;
:title = "sim" ;
:UUID = "8dce768e-f1d6-4876-bb20-c301e3e323f8" ;
:time_start = "2019-02-12 13:25:43" ;
:time_stop = "2019-02-13 00:06:05" ;

} // group runtime

group: params {
dimensions:
defocus = 1 ;
plasmon_energies = 51 ;

variables:
float defocus(defocus) ;
float defocus_weights(defocus) ;
float plasmon_energies(plasmon_energies) ;

// group attributes:
:program_arguments = "--params=inp.cfg --num-threads=4 --tmp-dir=/local --

→˓output-file=out.nc" ;
:config_file_contents = "..." ;

group: application {

// group attributes:
:random_seed = 967613772U ;

} // group application

group: simulation {

// group attributes:
:title = "sim" ;
:normalize_always = 0US ;
:bandwidth_limiting = 1US ;
:output_file = "out.nc" ;
:output_compress = 0US ;

} // group simulation

group: probe {

// group attributes:
:c5 = 5000000. ;
:cs = 2000. ;
:astigmatism_ca = 0. ;
:defocus = -0. ;
:fwhm_defoci = 6. ;
:num_defoci = 1U ;
:astigmatism_angle = 0. ;
:min_apert = 0. ;
:max_apert = 15.07 ;
:beam_energy = 200. ;
:scan_density = 40. ;

} // group probe

group: specimen {

// group attributes:
:max_potential_radius = 0.3 ;
:crystal_file = "Si_110_10x10x200_300K.xyz" ;

} // group specimen

(continues on next page)

7.2. Output file format 27

STEMsalabim Documentation, Release 5.4.1

(continued from previous page)

group: grating {

// group attributes:
:density = 90. ;
:nx = 490U ;
:ny = 490U ;
:slice_thickness = 0.76806 ;

} // group grating

group: adf {

// group attributes:
:enabled = 1US ;
:x = 0.5, 0.6 ;
:y = 0.5, 0.6 ;
:detector_min_angle = 0. ;
:detector_max_angle = 150. ;
:detector_num_angles = 151U ;
:detector_interval_exponent = 1.f ;
:average_configurations = 1US ;
:average_defoci = 1US ;
:save_slices_every = 10U ;

} // group adf

group: cbed {

// group attributes:
:enabled = 1US ;
:x = 0.5, 0.6 ;
:y = 0.5, 0.6 ;
:size = 0U, 0U ;
:average_configurations = 1US ;
:average_defoci = 0US ;
:save_slices_every = 101U ;

} // group cbed

group: frozen_phonon {

// group attributes:
:number_configurations = 10U ;
:fixed_slicing = 1US ;
:enabled = 1US ;

} // group frozen_phonon

group: plasmon_scattering {

// group attributes:
:enabled = 1US ;
:simple_mode = 0US ;
:plural_scattering = 0US ;
:max_energy = 25.f ;
:energy_grid_density = 2.f ;
:mean_free_path = 128.f ;
:plasmon_energy = 16.9f ;
:plasmon_fwhm = 4.f ;

} // group plasmon_scattering
} // group params

group: adf {
dimensions:

(continues on next page)

28 Chapter 7. File formats

STEMsalabim Documentation, Release 5.4.1

(continued from previous page)

adf_position_x = 22 ;
adf_position_y = 22 ;
adf_detector_angle = 151 ;
adf_defocus = 1 ;
adf_phonon = 1 ;
adf_slice = 15 ;
coordinate_dim = 2 ;
adf_plasmon_energies = 51 ;

variables:
float adf_intensities(adf_defocus, adf_position_x, adf_position_y, adf_phonon,

→˓adf_slice, adf_plasmon_energies, adf_detector_angle) ;
float center_of_mass(adf_defocus, adf_position_x, adf_position_y, adf_phonon,

→˓adf_slice, adf_plasmon_energies, coordinate_dim) ;
double adf_probe_x_grid(adf_position_x) ;
double adf_probe_y_grid(adf_position_y) ;
double adf_detector_grid(adf_detector_angle) ;
double adf_slice_coords(adf_slice) ;

} // group adf

group: cbed {
dimensions:
cbed_position_x = 22 ;
cbed_position_y = 22 ;
cbed_k_x = 327 ;
cbed_k_y = 327 ;
cbed_defocus = 1 ;
cbed_phonon = 1 ;
cbed_slice = 2 ;
cbed_plasmon_energies = 51 ;

variables:
float cbed_intensities(cbed_defocus, cbed_position_x, cbed_position_y, cbed_

→˓phonon, cbed_slice, cbed_plasmon_energies, cbed_k_x, cbed_k_y) ;
double cbed_probe_x_grid(cbed_position_x) ;
double cbed_probe_y_grid(cbed_position_y) ;
double cbed_x_grid(cbed_k_x) ;
double cbed_y_grid(cbed_k_y) ;
double cbed_slice_coords(cbed_slice) ;

} // group cbed
}

The structure of NetCDF files is hierarchical and organized in groups. The following groups are written by
STEMsalabim:

7.2.1 AMBER

This group contains the atomic coordinates, species, displacements, radii, etc. for the complete crystal for each
single calculated frozen lattice configuration, as well as for each calculated defocus value. The AMBER group
content is compatible with the AMBER specifications. A STEMsalabim NetCDF file can be opened seamlessly
with the Ovito crystal viewer.

Attributes
Conventions String “AMBER” (required for AMBER)
ConventionVersion Version of the AMBER spec.
program Program name (“STEMsalabim”)
programVersion STEMsalabim’s version
title Simulation title (Param simulation.title)
Dimensions
atom Number of atoms

Continued on next page

7.2. Output file format 29

http://ambermd.org/netcdf/nctraj.xhtml
http://www.ovito.org/

STEMsalabim Documentation, Release 5.4.1

Table 1 – continued from previous page
elements Number of different elements
spatial Number of spatial dimensions (3)
cell_spatial Number of spatial dimensions (3)
cell_angular Number of spatial dimensions (3)
label Character String for element names (6)
frame Number of frozen phonon configurations * number of defoci
slices Number of slices in the multi-slice approximation
grid_x Number of simulation grid points in x direction
grid_y Number of simulation grid points in y direction
Variables
spatial Names of the spatial dimensions (“x,y,z”)
cell_spatial Names of the spatial cell parameters (“a,b,c”)
cell_angular Names of the cell angles (“alpha,beta,gamma”)
coordinates Coordinates of the atoms [nm]
lattice_coordinates Equilibrium coordinates of the atoms (i.e. lattice positions without displacements) [nm]
cell_lengths Cell lengths (Same for each frame) [nm]
cell_angles Cell angles (Same for each frame, always “90, 90, 90”) [degree]
radius Radii of each atom [nm]
msd Mean square displacement of each atom [nm^2]
slice Slice id of each atom
slice_coordinates z-Coordinate of each slice [nm]
element Element id of each atom (see atom_types)
system_lengths Cell lengths [nm]
system_angles Cell angles [degree]
atom_types Description of atom types

7.2.2 runtime

Attributes
programVersionMajor Major version of STEMsalabim
programVersionMinor Minor version of STEMsalabim
programVersionPatch Patch version of STEMsalabim
gitCommit Commit hash of the git commit of STEMsalabim
title Simulation title (Param simulation.title)
UUID Automatically generated universally unique identifier of this run.
time_start Start time of the simulation run
time_stop Finish time of the simulation run

7.2.3 params

Note: The params group contains subgroups with attributes that correspond exactly to the simulation parameters
as written, except

• /params/application/random_seed is set to the generated random seed

• /params/grating/nx and /params/grating/ny contain the simulation grid size used.

30 Chapter 7. File formats

STEMsalabim Documentation, Release 5.4.1

Attributes
program_arguments CLI arguments of this run
config_file_contents Contents of the parameter file of this run.
Dimensions
defocus Number of defocus (param probe.num_defoci)
Variables
defocus The values of the defoci of the defocus series
defocus_weights The weights for defocus averaging corresponding to each defocus

7.2.4 adf

Dimensions
adf_position_x Number of probe positions in x direction
adf_position_y Number of probe positions in y direction
adf_detector_angle Number of stored detector angle bins
adf_defocus Number of stored defoci (1 when averaged over defoci)
adf_phonon Number of stored frozen phonon configuration (1 when averaged over configurations)
adf_slice Number of stored slices
coordinate_dim x,y coordinate dimension (2)
Variables
adf_intensities ADF intensities of each pixel [fraction of beam]
center_of_mass Center of mass of each pixel [mrad]
adf_probe_x_grid Position vector of the probe in x direction [nm]
adf_probe_y_grid Position vector of the probe in y direction [nm]
adf_detector_grid Lower angles of the detector bins [mrad]
adf_slice_coords Coordinates of the stored slices [nm]

7.2.5 cbed

Dimensions
cbed_position_x Number of probe positions in x direction
cbed_position_y Number of probe positions in y direction
cbed_k_x Number of k grid in k_x direction
cbed_k_y Number of k grid in k_y direction
cbed_defocus Number of stored defoci (1 when averaged over defoci)
cbed_phonon Number of stored frozen phonon configuration (1 when averaged over configurations)
cbed_slice Number of stored slices
Variables
cbed_intensities cbed intensities of each pixel [fraction of beam]
cbed_probe_x_grid Position vector of the probe in x direction [nm]
cbed_probe_y_grid Position vector of the probe in y direction [nm]
cbed_x_grid Angles of k_x grid [mrad]
cbed_y_grid Angles of k_y grid [mrad]
cbed_slice_coords Coordinates of the stored slices [nm]

7.3 Reading NC Files

For a detailed view of the structure, we suggest using the ncdump utility: ncdump -h
some_results_file.nc. As the underlying file format of NetCDF is HDF5, you may use any other
HDF5 viewer to have a look at the results.

7.3. Reading NC Files 31

http://www.unidata.ucar.edu/software/netcdf//old_docs/docs_4_1/netcdf/ncdump.html

STEMsalabim Documentation, Release 5.4.1

There are NetCDF bindings for most popular programming languages.

1. In MATLAB, we recommend using h5read() and the other HDF5 functions.

2. For Python, use the netCDF4 module.

32 Chapter 7. File formats

https://de.mathworks.com/help/matlab/high-level-functions.html
http://unidata.github.io/netcdf4-python/

CHAPTER 8

Frequently Asked Questions

8.1 What about the name STEMsalabim?

STEMsalabim stems from the word Simsalabim which is known in Germany as what a magician says when casting
spells (see here for a german dictionary entry). Furthermore, the phrase appears in the famous German children’s
song Auf einem Baum ein Kuckuck, where the phrase to our knowledge doesn’t really have any meaning. (The
song is about a cuckoo sitting on a tree and being shot by a huntsman. . .) Most germans will recognize the word.
There is no contextual relation between STEM and the word Simsalabim.

When we first started writing the code we came up with it as a working title and we then simply agreed on keeping
it.

33

https://de.wiktionary.org/wiki/Simsalabim
https://de.wikipedia.org/wiki/Auf_einem_Baum_ein_Kuckuck

STEMsalabim Documentation, Release 5.4.1

34 Chapter 8. Frequently Asked Questions

CHAPTER 9

What’s new

9.1 STEMsalabim 5.4.0

June 17th, 2022

• Added angular-dependent calculation of center of mass (COM) of the diffraction pattern. The COM now is
not only calculated for the whole diffraction pattern, but also for each ring element specified by the ADF
grid. This is done without normalizing by the intensity as this is meant to be done in post-processing with
the stored ADF intensities. The x and y direction of the COM are now stored in the new variables com_x
and com_y in the NetCDF file.

• Plasmon scattering:

– Make it possible to calculate only every n-th slice.

– Create own group plasmon_scattering in NetCDF file. Keep the plasmon dimensions with size 1
in the usual ADF group to ensure backwards compatibility.

– Add writing of the plasmon slice coordinates to the nc file.

– New paramter in cfg file: Instead of setting the energy loss always equal to the plasmon energy,
set it as a single parameter in the config file.

• Added switch in config file for saving the probe wave function at each scanpoint.

• Fixed bugs concerning:

– Output of ssb-mkin with --stored-potentials

– Dynamic calculation of work_package_size. Also add termination condition for the correspond-
ing for loop.

• Add beam tilt in x and y direction. Include a group for it in the cfg file.

• Implemented storing of potentials in an external file, i.e. when running a simulation with ssb-mkin and
ssb-run it is now optionally possible to store the potentials not in the usual NetCDF output file, but in an
additional NetCDF file. This is done because the potentials can take up very much storage space compared
to the other data. Also added output which tells the user if the simulation was done with stored potentials
and if so, in which file the potentials were stored.

• New high-level tests for

– ADF for potentials in external file

35

STEMsalabim Documentation, Release 5.4.1

– Calculation of COM over the whole diffraction pattern, which is stored in the NetCDF file in
ADF.center_of_mass

– Plasmons stored in their own group in the NetCDF file

– Slice coulomb potentials stored in extra file

9.2 STEMsalabim 5.3.0

August 24th, 2021

• Added high level tests for ADF. They are left optional with a switch in source code, as they always depend
on the paths to nc files. The idea is to generate nc files with the code version to test and to assert they contain
the correct results.

• The package size is now checked to fit the number of MPI processes and threads. The goal is to prevent the
case that some MPI processes and/or CPU cores stay idle. This has shown to be the case sometimes for few
scan points. Package size will be decreased if necessary. Also a warning for the case of nmb CPU cores >
nmb scan points is added.

• The switch plasmon_scattering.calculate_plasmons_in_all_slices has been added to config file. If set to true,
the single plasmon scattering will only be calculated for the last slice to save time. In the current version,
memory space in the netcdf file will still be allocated for all slices and left unchanged for all other slices but
the last one. This still has to be improved.

• Added the parameter calculate_plasmons_in_all_slices to make the choice possible, if the plasmon loss will
be calculated for all slices or only the last one.

• Updated parameters in documentation, i.e. add new ones and remove deprecated ones.

• Fixed bug concerning defocus weights.

– Implemented the calculation of defocus weights as it is described in [Beyer, A., et al., Journal of
microscopy 262.2 (2016): 171-177., https://onlinelibrary.wiley.com/doi/10.1111/jmi.12284].

– Changed parameter probe.fwhm_defoci to probe.delta_defocus_max and added pa-
rameter probe.fwhm_defocus_distribution. e.g. the ensemble (probe.defocus = 0,
probe.delta_defocus_max = 12, probe.num_defoci = 7) would give the defoci [-12, -8, -4,
0, 4, 8, 12]. The parameter probe.fwhm_defoci still can be used instead to keep backwards
compatibility and not constitute an API break.

– Added tests: both a unit test as well as a high level test reading the values from nc file.

9.3 STEMsalabim 5.2.0

June 24, 2021

• Changes on plasmon part:

– Corrected normalization of wave functions so that the sum of intensities is equal to the zero loss
intensity (i.e. without accounting for plasmons).

– Fixed bug which made plasmon calculations with multiple MPI processes impossible.

9.4 STEMsalabim 5.1.1

December 18th, 2020

• Bugfix: now custom slicing is possible again by giving the slice of each atom in an extra column.

• Changes on plasmon part:

36 Chapter 9. What’s new

https://onlinelibrary.wiley.com/doi/10.1111/jmi.12284

STEMsalabim Documentation, Release 5.4.1

– Now only one plasmon energy is used, i.e. no more integration and no more energy resolution.

– The plasmon scattering cross section is now moved to multiple positions in real space.

9.5 STEMsalabim 5.1.0

March 27th, 2020

• Added switch simulation.chunking_enabled to make chunking in netcdf file optional. In former version for
big data amounts, especially when storing CBEDs, chunking sizes sometimes exceed the maximum possible
value, leading to errors. This can be prevented by switching off chunking completely.

• Changed scattering back to as it was done in STEMsalabim 4.

• Added function for saving wave functions. It has to be used in source code, there is no option to use it as a
user.

• Improvements on plasmon part.

9.6 STEMsalabim 5.0.0

February 28th, 2019

IMPORTANT

The parameters application.verbose and simulation.skip_simulation are deprecated now. The groups
adf/adf_intensities, cbed/cbed_intensities, and adf/center_of_mass now have a dimension for energy loss. It is
usually 1 unless plasmon scattering feature is used.

9.6.1 Highlights

• Speed improvements by increasing the grid sizes to match efficient FFT sizes. Note, that this may result in
a higher simulation grid density than specified in grating.density parameter!

• Alternative parallelization scheme, see Hybrid Parallelization model. When appropriate, different MPI
procs now calculate different frozen phonon configurations / defoci in parallel. This reduces the required
amount of communication between the processors.

• Automatic calculation of center of mass of the CBEDs for all ADF points. The COMs are calculated when
adf.enabled = true and stored in the NC file next to adf/adf_intensities in adf/center_of_mass. Unit is mrad.

• New executables ssb-mkin and ssb-run. The former prepares an input NC file from which the latter can run
the simulation. This has multiple advantages. See Structure of a simulation for more information.

• Single plasmon scattering.

9.6.2 Other changes

• Removed application.verbose parameter.

• Removed simulation.skip_simulation.

• Ability to disable thermal displacements via frozen_phonon.enable = false parameter.

• Fixed a serious bug with the integrated defocus averaging.

• Input XYZ files can now contain more than one space or TAB character for column separation.

• Removed Doxygen documentation and doc string comments.

• Default FFTW planning is now FFTW_MEASURE. This improves startup times of the simulation slightly.

9.5. STEMsalabim 5.1.0 37

STEMsalabim Documentation, Release 5.4.1

• Changed the chunking of the adf/adf_intensities and cbed/cbed_intensities variables for faster write speed.

• Added AMBER/slice_coordinates variable to the output file, that contains the z coordinate of the upper
boundary of each slice in nm.

• Removed HTTP reporting and CURL dependency.

• Significant code refactoring and some minor bugs fixed.

• Improved documentation.

9.7 STEMsalabim 4.0.1, 4.0.2

March 23rd, 2018 March 21st, 2018

• Bug fixes

• Changed chunking of the ADF variable

9.8 STEMsalabim 4.0

March 9th, 2018

IMPORTANT

I’m releasing this version as 4.0.0, but neither the input nor output files changed. The parameter precision has
become deprecated and there is a parameter tmp-dir. Please see the documentation.

• Removed option for double precision. When requested, this may be re-introduced, but it slowed down
compilation times and made the code significantly more complicated. The multislice algorithm with all its
approximations, including the scattering factor parametrization, is not precise enough to make the difference
between single and double precision significant.

• Improved the Wave class, so that some important parts can now be vectorized by the compiler.

• Introduced some more caches, so that performance could greatly be improved. STEMsalabim should now
be about twice as fast as before.

• Results of the MPI processors are now written to temporary files and merged after each configuration is
finished. This removes many MPI calls which tended to slow down the simulation. See the –tmp-dir
parameter.

• Moved the Element, Atom, and Scattering classes to their own (isolated) library libatomic. This is easier to
maintain.

• Simplified MPI communication by getting rid of serialization of C++ objects into char arrays. This is too
error-prone anyway.

• Added compatibility with the Intel parallel studio (Compilers, MKL for FFTs, Intel MPI). Tested with Intel
17 only.

• Some minor fixes and improvements.

9.9 STEMsalabim 3.1.0, 3.1.1, 3.1.2, 3.1.3, 3.1.4

February 23nd, 2018

• Added GPL-3 License

• Moved all the code to Gitlab

• Moved documentation to readthedocs.org

38 Chapter 9. What’s new

STEMsalabim Documentation, Release 5.4.1

• Added Gitlab CI

9.10 STEMsalabim 3.0.1 and 3.0.2

February 22nd, 2018

• Fixed a few bugs

• Improved the CMake files for better build process

9.11 STEMsalabim 3.0.0

January 3rd, 2018

• Reworked input/output file format.

• Reworked CBED storing. Blank areas due to bandwidth limiting are now removed.

• Changes to the configuration, mainly to defocus series.

• Compression can be switched on and off via config file now.

• Prepared the project for adding a Python API in the future.

• Added tapering to smoothen the atomic potential at the edges as explained in I. Lobato, et al, Ultrami-
croscopy 168, 17 (2016).

• Added analysis scripts for Python and MATLAB to the Si 001 example.

9.12 STEMsalabim 2.0.0

August 1st, 2017

• Changed Documentation generator to Sphinx

• Introduced a lot of memory management to prevent memory fragmentation bugs

• split STEMsalabim into a core library and binaries to ease creation of tools

• Added diagnostics output with –print-diagnostics

• Code cleanup and commenting

9.13 STEMsalabim 2.0.0-beta2

April 20th, 2017

• Added possibility to also save CBEDs, i.e., the kx/ky resolved intensities in reciprocal space.

• Improved documentation.

• Switched to NetCDF C API. Dependency on NetCDF C++ is dropped.

• Switched to distributed (parallel) writing of the NC files, which is required for the CBED feature. This
requires NetCDF C and HDF5 to be compiled with MPI support.

9.10. STEMsalabim 3.0.1 and 3.0.2 39

https://www.sciencedirect.com/science/article/pii/S030439911630081X
https://www.sciencedirect.com/science/article/pii/S030439911630081X

STEMsalabim Documentation, Release 5.4.1

9.14 STEMsalabim 2.0.0-beta

March 27th, 2017

• Lots of code refactoring and cleanup

• Added Doxygen doc strings

• Added Markdown documentation and make doc target to build this website.

• Refined the output file structure

• Added HTTP reporting feature

• Added fixed_slicing option to fix each atom’s slice througout the simulation

• Got rid of the boost libraries to ease compilation and installation

9.15 STEMsalabim 1.0

November 18th, 2016

• Initial release.

40 Chapter 9. What’s new

CHAPTER 10

Citing STEMsalabim

A technical paper introducing STEMsalabim is published in Ultramicroscopy journal [1].

If you use our program or its results, please cite us. You may use the following bibTeX entry:

@article{Oelerich2017,
title = "STEMsalabim: A high-performance computing cluster friendly code for

→˓scanning transmission electron microscopy image simulations of thin specimens",
journal = "Ultramicroscopy",
volume = "177",
number = "",
pages = "91 - 96",
year = "2017",
note = "",
issn = "0304-3991",
doi = "http://dx.doi.org/10.1016/j.ultramic.2017.03.010",
url = "http://www.sciencedirect.com/science/article/pii/S030439911630300X",
author = "Jan Oliver Oelerich and Lennart Duschek and Jürgen Belz and Andreas

→˓Beyer and Sergei D. Baranovskii and Kerstin Volz",
keywords = "Multislice simulations",
keywords = "Electron scattering factors",
keywords = "MPI",
keywords = "Phonons"

}

[1]: http://dx.doi.org/10.1016/j.ultramic.2017.03.010

41

http://dx.doi.org/10.1016/j.ultramic.2017.03.010

STEMsalabim Documentation, Release 5.4.1

42 Chapter 10. Citing STEMsalabim

CHAPTER 11

Research done with STEMsalabim

11.1 2018

• Composition determination of multinary III/V semiconductors via STEM HAADF multislice simulations
L. Duschek, A. Beyer, J. O. Oelerich, K. Volz

11.2 2017

• Surface relaxation of strained Ga(P,As)/GaP heterostructures investigated by HAADF STEM A. Beyer, L.
Duschek, J. Belz, J. O. Oelerich, K. Jandieri, K. Volz

• Atomic structure of ‘W’-type quantum well heterostructures investigated by aberration-corrected STEM P.
Kuekelhan, A. Beyer, C. Fuchs, M.J. Weseloh, S.W. Koch, W. Stolz, K. Volz

• Influence of surface relaxation of strained layers on atomic resolution ADF imaging A. Beyer, L. Duschek,
J. Belz, J. O. Oelerich, K. Jandieri, K. Volz

• Local Bi ordering in MOVPE grown Ga(As,Bi) investigated by high resolution scanning transmission elec-
tron microscopy A. Beyer, N. Knaub, P. Rosenow, K. Jandieri, P. Ludewig, L. Bannow, S. W.Koch, R.
Tonner, K. Volz

• Influence of surface relaxation of strained layers on atomic resolution ADF imaging A. Beyer, L. Duschek,
J. Belz, J. O. Oelerich, K. Jandieri, K. Volz

• STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron
microscopy image simulations of thin specimens J. O. Oelerich, L. Duschek, J. Belz, A. Beyer, S. D. Bara-
novskii, K. Volz

43

https://doi.org/10.1016/j.ultramic.2017.11.002
https://dx.doi.org/10.1111/jmi.12622
https://dx.doi.org/10.1111/jmi.12647
https://doi.org/10.1016/j.ultramic.2017.04.019
https://doi.org/10.1016/j.apmt.2016.11.007
https://doi.org/10.1016/j.apmt.2016.11.007
https://doi.org/10.1016/j.ultramic.2017.04.019
https://doi.org/10.1016/j.ultramic.2017.03.010
https://doi.org/10.1016/j.ultramic.2017.03.010

	What STEMsalabim calculates
	Background
	Probe wave function
	Multislice Simulation
	Detector

	Installing STEMsalabim
	Requirements
	Downloading the source code
	Building STEMsalabim

	Running STEMsalabim
	Parallel runs
	Si 001 example
	ssb-mkin and ssb-run
	NetCDF files

	Visualization of crystals and results
	Visualize the supercell with Ovito
	Generate an ADF STEM image
	What now?

	General information
	Structure of a simulation
	Hybrid Parallelization model

	Simulation Parameters
	Parameter files
	Command line arguments

	File formats
	Crystal file format
	Output file format
	Reading NC Files

	Frequently Asked Questions
	What about the name STEMsalabim?

	What’s new
	STEMsalabim 5.4.0
	STEMsalabim 5.3.0
	STEMsalabim 5.2.0
	STEMsalabim 5.1.1
	STEMsalabim 5.1.0
	STEMsalabim 5.0.0
	STEMsalabim 4.0.1, 4.0.2
	STEMsalabim 4.0
	STEMsalabim 3.1.0, 3.1.1, 3.1.2, 3.1.3, 3.1.4
	STEMsalabim 3.0.1 and 3.0.2
	STEMsalabim 3.0.0
	STEMsalabim 2.0.0
	STEMsalabim 2.0.0-beta2
	STEMsalabim 2.0.0-beta
	STEMsalabim 1.0

	Citing STEMsalabim
	Research done with STEMsalabim
	2018
	2017

